ECE 320 - Homework \#4

Max/Min Circuits, Clipper Circuits, Transistor Theory. Due Monday, September 21st

Max/Min:

1) Determine the voltages and currents for the following max/min circuit. What function does this circuit implement? $Y=f(A, B, C, D)$

	V 1	V 2	V 3	I 2	I 3	I
ideal diode	7.70 V	7.00 V	5.70 V	3.60 mA	0.70 mA	6.30 mA
circuitlab	7.641 V	7.076 V	5.667 V	3.652 mA	0.7076 mA	6.333 mA

2) Check your results in CircuitLab (or similar program)

Clipper Circuits:

3) Design a circuit to approximate the following function subject to the following requirements:

- Input: $0 . .10 \mathrm{~V}$, capable of 100 mA
- Output: 100k resistor
- Relationship: Graph below, +/-200mV

Slope $=2.0$

$$
\begin{aligned}
& \text { gain }=1+\frac{R_{0}}{1 k}=2.0 \\
& R_{0}=1 \mathrm{k} \Omega
\end{aligned}
$$

Slope $=1.0$

$$
\begin{aligned}
& V_{z}=6.00 \mathrm{~V} \\
& \text { gain }=1.0=\left(\frac{R_{1}}{R_{1}+1 k}\right)(2.0)
\end{aligned}
$$

$$
R_{1}=1 \mathrm{k} \Omega
$$

Slope $=0.0$

$$
V_{z}=10.0 \mathrm{~V}
$$

$$
R_{2}=0 \Omega
$$

4) Check your design in CircuitLab

zener diodes modified for $\mathrm{Vz}=6.0 \mathrm{~V}$ and $\mathrm{Vz}=10.0 \mathrm{~V}$

V2 vs. Vin for the clipper circuit
5) Design a circuit which meets the following requirements:

- Input: -10 .. +10 V , capable of 100 mA
- Output: 1k resistor
- Relationship:

$$
V_{\text {out }}=\left\{\begin{array}{cc}
+6 V & V_{\text {in }}>+6 \mathrm{~V} \\
V_{\text {in }} & -6 V<V_{\text {in }}<+6 V \\
-6 V & V_{\text {in }}<-6 V
\end{array}\right.
$$

Vz modified for $\mathrm{Vz}=5.3 \mathrm{~V}$

V1 (orange) clips at +6 V and -6 V

Transistors

6) Determine the current gain, β, for the transistor show below. Also label the off, active, and saturated regions.
when $\mathrm{Ib}=5 \mathrm{~mA}, \mathrm{Ic}=125 \mathrm{~mA}$

$$
\beta=\frac{125 m A}{5 m A}=25
$$

7) Draw the load-line and determine the Q-point for

- $\mathrm{Vin}=0 \mathrm{~V}$
- $\mathrm{Vin}=3 \mathrm{~V}$
- $\mathrm{Vin}=6 \mathrm{~V}$

Lab: Please include a photo of your circuit to receive credit for problems 8-10

8-10) Build the following circuit with your electronics kit.

- Measure Vce and Ic for $1 \mathrm{k}<\mathrm{Rb}<$ infinity.
- Determine the operating point for each conidition and the current gain for your 3904 transistor
- Draw the load line on the graph below and mark each point you measured

Rb	lb	Vce	Ic	Current Gain (Ic/lb)	Operating Region (off / active / saturated)
1 k $\mathrm{br}-\mathrm{bl}-\mathrm{re}$	4.25 mA	0.01 V	4.99 mA	1.174	saturated
10 k $\mathrm{br}-\mathrm{bl}-\mathrm{or}$	428 uA	0.06 V	4.94 mA	11.54	saturated
100 k $\mathrm{br}-\mathrm{bl}-\mathrm{ye}$	43.30 uA	3.11 V	1.89 mA	43.65	active
1 M $\mathrm{br}-\mathrm{bl}-\mathrm{gr}$	4.410 uA	4.79 V	0.21 mA	47.62	active
infinity	0 uA	4.98 V	0 mA	n / a	off

