ECE 320 - Homework \#7

DC to AC, SCR, Boolean Logic. Due Monday, October 12th

DC to AC

1) Let

- $A=0 V / 5 V$ square wave, $60 \mathrm{~Hz}, 0$ degree time delay
- $B=0 \mathrm{~V} / 5 \mathrm{~V}$ square wave, $60 \mathrm{~Hz}, 180$ degree time delay
- $\mathrm{C}=10 \mathrm{uF}$

Determine using CircuitLab the voltage V2 (i.e. the votlage across a DC motor, modeled as a $10 \mathrm{Ohm} \& 200 \mathrm{mH}$ load) (note: The LC oscillator is tuned to 180 Hz . Increase C to bring this down to 60 Hz .)

2) Adjust C so that the voltage across the motor is as close to a sine wave as possible (trial and error)

The resonance of an LC oscillator is

$$
\left(\frac{1}{L C}\right)=\omega^{2}
$$

To drop the resonance by $3 x$, make C $3 x$ larger

SCR

3) Assume a firing angle of 25 degrees. Determine the voltage at V1 and V2 (both DC and AC).

V1(DC)

$$
\begin{aligned}
& V_{1}=\left(\frac{V_{p}+0.7}{\pi}\right)(1+\cos \theta)-0.7 \\
& V_{1}(D C)=\left(\frac{18.6+0.7}{\pi}\right)\left(1+\cos \left(25^{0}\right)\right)-0.7 \\
& V_{1}(D C)=11.011 \\
& V_{2}(D C)=\left(\frac{50}{50+5}\right) 11.011 \\
& V_{2}(D C)=10.01 V \\
& V_{1}(A C)=18.6 V-(-0.7 V)=19.3 V_{p p} \\
& V_{2}(A C)=\left(\frac{(23.43-j 62.05)}{(23.43-j 62.05)+(5+j 226.2)}\right) 19.3 V_{p p} \\
& V_{2}(A C)=2.194 V_{p p}
\end{aligned}
$$

4) Change this circuit so that

- The voltge at V2 is 5.00 V (DC)
- With a ripple of 500 mVpp

$$
\begin{aligned}
& V_{1}=\left(\frac{50+5}{50}\right) V_{2}=5.50 \mathrm{~V} \\
& V_{1}=5.50 \mathrm{~V}=\left(\frac{V_{p}+0.7}{\pi}\right)(1+\cos \theta)-0.7 \\
& \theta=89.47^{0}
\end{aligned}
$$

C2:
50 uF resulted in 2.194 Vpp ripple
To reduce the ripple to 500 mVpp

$$
\begin{aligned}
& C_{2}=\left(\frac{2.194 V_{p p}}{500 m V_{p p}}\right) 50 \mu F \\
& C_{2}=219.4 \mu F
\end{aligned}
$$

5) Simulate this circuit in Matlab by

- Writing the differential eqautions which describe this circuit (state variables: IL and Vc)
- Specify V1(t) as a full-wave rectified sine wave, clipped at X degrees (from problem \#4)
- Use numerical integration to find V2(t

$$
\begin{aligned}
& V_{1}=L \dot{I}_{3}=V_{1}-5 I_{3}-V_{2} \\
& I_{c}=C \dot{V}_{2}=I_{3}-\frac{V_{2}}{50} \\
& I_{3}=3.333 V_{1}-16.667 I_{3}-3.333 V_{2} \\
& \dot{V}_{2}=4557.9 I_{3}-91.158 V_{2}
\end{aligned}
$$

matlab code

```
t = [0:0.001:1]'/120/2;
dt = ( t(2) - t(1) );
phi = ( 89.47/360) * (1/120);
V1 = 18.6*sin(754*t) .* (t > phi) - 0.7*(t < phi);
V2 = 0*t;
I3 = 0*t;
npt = length(t);
for n=1:40
    V2(1) = V2(npt);
    I3(1) = I3(npt);
    for i=1:npt-1
        dI3 = 3.3333*V1(i) - 16.667*I3(i) - 3.333*V2(i);
        dV2 = 4557.9*I3(i) - 91.158*V2(i);
        V2(i+1) = V2(i) + dV2 * dt;
        I3(i+1) = I3(i) + dI3 * dt;
        end
    plot(t,V1,t,V2);
    pause(0.1);
    end
plot(t,V2);
```


V1 (blue) and V2 (green)


```
>> mean(V2)
ans=5.1070
>> max(V2)-min(V2)
ans=0.1238
```


Boolean Logic:

5) Implement the following funciton using NAND gates (i.e. circle the ones)

$\mathrm{Y}=\mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{BC}^{\prime}+\mathrm{CD}^{\prime}+\mathrm{A}$

6) Implement the following function using NOR gates (i.e. circle the zeros)

$\mathrm{Y}^{\prime}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}+\mathrm{B}^{\prime} \mathrm{C}+\mathrm{CD}$
$\mathrm{Y}=\left(\mathrm{A}+\mathrm{B}+\mathrm{D}^{\prime}\right)\left(\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{C}^{\prime}+\mathrm{D}^{\prime}\right)$

