ECE 320 - Homework \#9

MOSFET switch, CMOS logic. Due Monday, October 26th

MOSFET Switch

One of the MOSFET's that CircuitLab has is an IRF1047. It's specifications are

- $\max (\mathrm{Ic})=100 \mathrm{~A}$ continuous
- $\quad \mathrm{Vgs}(\mathrm{th})=4 \mathrm{~V}(\max)$
- Rds = 7.8mOhm @ Ids = 78A @ Vgs = 10V
- \$0.53 each

1) Determine the transconductance gain, kn, for this MOSFET. Assume $\mathrm{Vtn}=4.00 \mathrm{~V}$

In the Ohmic region:

$$
\begin{aligned}
& V_{d s}=(7.8 m \Omega)(78 A)=0.608 V \\
& I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& 78 A=k_{n}\left(10-4-\frac{0.608}{2}\right) 0.608
\end{aligned}
$$

$$
k_{n}=22.509 \frac{A}{V^{2}}
$$

2) Determine the votlages and currents for the following circuit when $\mathrm{Vg}=5 \mathrm{~V}$

Assume Ohmic:

$$
\begin{aligned}
& I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& I_{d s}=22.509\left(5-4-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}+2 I_{d s}=40
\end{aligned}
$$

no solution.
Assume saturated

$$
\begin{aligned}
& I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2} \\
& I_{d s}=\frac{22.509}{2}(5-4)^{2} \\
& I_{d s}=11.255 \mathrm{~A} \\
& V_{d s}=40-2 I_{d s} \\
& V_{d s}=17.491 \mathrm{~V}
\end{aligned}
$$

Check

$$
V_{d s}>V_{g s}-V_{t h}
$$

matlab code:

```
Vds = [0:0.01:40]';
I1 = 22.509*(5-4-Vds/2).*Vds;
I2 = (40 - Vds)/2;
I3 = 0*Vds + max(I1);
plot(Vds,I1,'b',Vds,I2,'r',Vds,I3,'g');
xlabel('Vds');
ylabel('Ids');
```

Check your result in CircuitLab

	Vds	Ids
Calcualted	17.49 V	11.26 A
Simulated	16.22 V	11.89 A

3) Determine the votlages and currents for the following circuit when $\mathrm{Vg}=10 \mathrm{~V}$

- Check your result in CircuitLab

Assume Ohmic

$$
\begin{aligned}
& I_{d s}=k_{n}\left(V_{g s}-4-\frac{V_{d s}}{2}\right) V_{d s} \\
& I_{d s}=22.509\left(10-4-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}+2 I_{d s}=40
\end{aligned}
$$

Solving

$$
\begin{aligned}
& V_{d s}=149.4 \mathrm{mV} \\
& I_{d s}=19.925 A \\
& R_{d s}=\frac{V_{d s}}{I_{d s}}=77.6 \mathrm{~m} \Omega
\end{aligned}
$$

Matlab Code

```
Vds = [0:0.01:40]';
I1 = 22.509*(10-4-Vds/2).*Vds;
I2 = (40 - Vds)/2;
I3 = 0*Vds + max(I1);
plot(Vds,I1,'b',Vds,I2,'r',Vds,I3,'g');
xlabel('Vds');
ylabel('Ids');
```


In CircuitLab

	Vds	Ids
Calcualted	149 mV	19.93 A
Simulated	278 mV	19.86 A

CMOS Logic

4) Design a CMOS gate to implement the function: $f(A, B, C, D)$

Circle the zeros (also works if you circle the ones)

$$
\begin{aligned}
& \bar{Y}=C D+\bar{B} C+\bar{A} \bar{B} C \\
& Y=(\bar{C}+\bar{D})(B+\bar{C})(A+B+\bar{C})
\end{aligned}
$$

