ECE 320 - Final (pt 1) - Name

Semiconductors \& Diodes

1) Load Lines: Assume the VI characteristics for the diode is as shown in the graph. Draw the load line for the following circuit and determine Id and Vd. Assume R $=1000+100 *$ (your birth month) + (your birth date).

$\underset{\substack{\mathrm{R} \\ 1000+100^{\circ} \mathrm{mo}+\text { day }}}{ }$	$\begin{gathered} \text { Load Line } \\ \text { x-intercept (volts) } \end{gathered}$	$\begin{gathered} \text { Load Line } \\ \text { y-intercept (mA) } \end{gathered}$	$\underset{\substack{\mathrm{Vd} \\ \text { Vols }}}{\text { cen }}$	$\xrightarrow[\text { ma }]{\text { Id }}$
1514	11V	12.77mA	5.5V	6.2 mA

2) Nonlinear equations: Diode circuit

Assume the VI characteristics for the diodes shown below are

$$
V_{d}=0.052 \ln \left(10^{8} \cdot I_{d}+1\right) \quad I_{d}=10^{-8} \cdot\left(\exp \left(\frac{V_{d}}{0.052}\right)-1\right)
$$

Write N equations to solve for N unknonws: $\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4, \mathrm{Id} 1, \mathrm{Id} 2, \mathrm{Id} 3\}$.

- Note: you do not need to solve.
- $\mathrm{R}=1000+100^{*}($ your birth month $)+$ (birth date). For example, May 14th gives 1514 Ohms.

$$
\begin{aligned}
& I_{d 1}=10^{-8} \cdot\left(\exp \left(\frac{V_{0}-V_{1}}{0.052}\right)-1\right) \\
& I_{d 2}=10^{-8} \cdot\left(\exp \left(\frac{V_{2}-V_{3}}{0.052}\right)-1\right) \\
& I_{d}=10^{-8} \cdot\left(\exp \left(\frac{V_{1}-V_{4}}{0.052}\right)-1\right) \\
& -I_{d 1}+\left(\frac{V_{1}-V_{2}}{1 k}\right)+\left(\frac{V_{1}-V_{3}}{3 k}\right)+I_{d 3}=0 \\
& \left(\frac{V_{2}-V_{1}}{1 k}\right)+I_{d 2}=0 \\
& -I_{d 2}+\left(\frac{V_{3}-V_{1}}{3 k}\right)+\left(\frac{V_{3}}{1514}\right)=0 \\
& -I_{d 3}+\left(\frac{V_{4}}{4 k}\right)=0
\end{aligned}
$$

3) Ideal Silicon Diodes. Assume the diodes in this circuit are ideal silicon diodes:

- $\mathrm{Vd}=0.7 \mathrm{~V} \quad \mathrm{Id}>0$
- $\mathrm{Id}=0 \quad \mathrm{Vd}<0.7 \mathrm{~V}$
- $\mathrm{R}=1000+100 *$ (your birth month) + (birth date). For example, May 14th gives 1514 Ohms.

R	Id 1	V 1	V 2	V 3	V 4
1514	6.026 mA	9.3 V	6.568 V	5.868 V	8.6 V

There is one unknown (V3). Writing the supernod equation

$$
\begin{aligned}
& \left(\frac{V_{3}}{1514}\right)+\left(\frac{V_{3}-9.3}{3 k}\right)+\left(\frac{\left(V_{3}+0.7\right)-9.3}{1 k}\right)=0 \\
& V_{3}=5.868 \mathrm{~V} \\
& V_{2}=V_{3}+0.7=6.568 \mathrm{~V}
\end{aligned}
$$

To find Id1

$$
I_{d 1}=\left(\frac{V_{1}-V_{2}}{1 k}\right)+\left(\frac{V_{1}-V_{3}}{3 k}\right)+\left(\frac{V_{4}}{4 k}\right)
$$

$$
I_{d 1}=6.026 m A
$$

4) AC to DC: Analysis: Determine V1 and V2 (both DC and AC) for the following AC to DC converter

R	V 1		V 2	
	DC	AC	DC	AC
1514	18.48 V	1.640 Vpp	17.12 V	0.372 Vpp

$\max (\mathrm{V} 1)=19.3 \mathrm{~V}$
$I \approx\left(\frac{19.3 V}{120+1514}\right)=11.81 m A \quad$ worst case
$I=C \frac{d V}{d t}$
$11.81 \mathrm{~mA}=120 \mu F \cdot\left(\frac{d V}{1 / 60 s}\right)$

$$
\begin{aligned}
& d V=1.640 V_{p p} \quad V l(A C) \\
& V_{1}(D C)=19.3 V-\frac{1}{2} \cdot 1.640 V=18.48 \mathrm{~V}
\end{aligned}
$$

$$
V_{2}(D C)=\left(\frac{1514}{1514+120}\right) V_{1}(D C)=17.12 \mathrm{~V}
$$

$$
V_{2}(A C)=\left(\frac{(118.9-j 407.4)}{(118.9-j 407.4)+(120+j 262)}\right) V_{1}(A C)
$$

$$
V_{2}(A C)=0.372 V_{p p}
$$

5) Clipper Circuit: Determine the resistors and zener votlages to implement the following function: $Y=f(X)$. Assume

- Ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- $\mathrm{R}=1000+100^{*}($ your birth month $)+($ birth date $)$

R $1000+10$ m $^{\text {mo day }}$	${ }^{\mathrm{R} 0}$	R 1	V 11	R^{2}	V 22
1514	1.86 k	974	4.0 V	$\mathbf{3 2 0}$	6.8 V

R1:

$$
\begin{aligned}
& \left(\frac{R_{1}}{R_{1}+1514}\right)(2.86)=1.12 \\
& R_{1}=\left(\frac{1.12}{2.86-1.12}\right) 1514=974 \Omega
\end{aligned}
$$

R2:

$$
\begin{aligned}
& \left(\frac{R_{12}}{R_{12}+1514}\right)(2.86)=0.393 \\
& R_{12}=\left(\frac{0.393}{2.86-0.393}\right) 1514=241.2 \Omega \\
& R_{2}=320.5 \Omega
\end{aligned}
$$

6) Determine the current gain, β. Also draw the load line and determine the operating point when Vin $=5 \mathrm{~V}$

	$\xrightarrow{\text { Curren C Gin }}$		Lomat ine		
1514	20	11V	110 m	5.3	56

$$
I_{b}=\left(\frac{5 V-0.7 V}{1514 \Omega}\right)=2.84 m A
$$

7) Design a Schmitt Trigger \& transistor switch so that

- Turns on the LED at 200 mA when RT >1500 Ohms
- Turns off the LED when RT <1200 Ohms

Assume

- $\mathrm{R}=1000+100^{*}$ (your birth month) + (your birth date)
- $\operatorname{Vce}($ sat $)=0.2 \mathrm{~V}$
- Current gain $(\beta)=100$

$\mathrm{RT}=1500$ Ohms
- $V_{1}=\left(\frac{1500}{1500+1514}\right) 10 \mathrm{~V}=4.977 \mathrm{~V}$
- $\mathrm{Y}=10$
$\mathrm{RT}=1200 \mathrm{Ohms}$
- $V_{1}=\left(\frac{1200}{1200+1514}\right) 10 \mathrm{~V}=4.422 \mathrm{~V}$
- $\mathrm{Y}=0 \mathrm{~V}$

Y goes down as V1 goes down (positive correlation). Connect to the + input.
Gain is

$$
\text { gain }=\left(\frac{10 V-0 V}{4.977 V-4.422 V}\right)=18.01
$$

8) DTL Logic: Determine the voltages and currents for the following DTL logic gage. Assume

- $\mathrm{R}=1000+100^{*}$ (your birth month) + (birth day)
- Ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$, and
- Ideal 3904 transistors $(\mathrm{Vbe}=0.7 \mathrm{~V}, \mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}, \beta=100)$

$\underset{\substack{\left.\mathrm{R} \\ \text { 1000 }+100^{\circ} \mathrm{motay}+1\right)}}{ }$	11	12	13	V4	v5
1514	2.38 mA	0	2.38mA	0.2V	0.2V

9) MOSFET Load Line: For the following MOSFET circuit

- Determine the transconductance gain, kn,
- Draw the load line (x and y intercept), and
- Determine $\{\mathrm{Vds}, \mathrm{Ids}\}$ when $\mathrm{Vg}=7 \mathrm{~V}$

$\stackrel{\mathrm{R}}{\substack{\text { Rmo day }}}$	$\stackrel{\text { kn }}{\text { kncanese asin }}$	$\underset{\substack{\text { Load Line } \\ \text { x=nereopt }}}{\text { Lemer }}$	$\underset{\substack{\text { Load Line } \\ \text { y ineocept }}}{\substack{\text { a }}}$	$\underset{\mathrm{Vg}=7 \mathrm{v}}{\mathrm{Vds}}$	$\underset{\substack{\text { Vgs } \\ \mathrm{Id}}}{ }$	$\begin{aligned} & \text { Operating } \\ & \text { Region } \end{aligned}$
1514	298 UA/V ${ }^{2}$	8V	5.28 mA	2.4V	3.6 mA	ohmic

kn calculations: Pick a point $(\mathrm{Vs}=10 \mathrm{~V}, \mathrm{Vgs}=8 \mathrm{~V}, \mathrm{Ids}=7.3 \mathrm{~mA})$. Region $=$ saturated

$$
I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2}
$$

$7.3 m A=\frac{k_{n}}{2}(8-1)^{2}$
$k_{n}=298 \frac{\mu A}{V^{2}}$
10) CMOS Logic
a) Design a CMOS logic gate to implement $\mathrm{Y}=\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$
CD

	00		01	11	10
	00	1	1	0	0
	01	1	x	x	0
	11	0	x	x	1
				1	
	0	0	1	1	

$$
\bar{Y}=\bar{A} C+A \bar{C}
$$

This is the logic on the low-side (n-channel MOSFETs)
from DeMorgan's law

$$
Y=(A+\bar{C})(\bar{A}+C)
$$

This is the logic for the high-side (p-channel MOSFETs)

