ECE 320 - Final (pt 1) - Name

Semiconductors \& Diodes

1) Load Lines: Assume the VI characteristics for the diode is as shown in the graph. Draw the load line for the following circuit and determine Id and Vd. Assume $\mathrm{R}=1000+100 *$ (your birth month) + (your birth date).

R $1000+100^{*} \mathrm{mo}+$ day	Load Line x-intercept (volts)	Load Line y-intercept (mA)	Vd Volts	Id mA

2) Nonlinear equations: Diode circuit

Assume the VI characteristics for the diodes shown below are

$$
V_{d}=0.052 \ln \left(10^{8} \cdot I_{d}+1\right) \quad I_{d}=10^{-8} \cdot\left(\exp \left(\frac{V_{d}}{0.052}\right)-1\right)
$$

Write N equations to solve for N unknonws: $\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4, \mathrm{Id} 1, \mathrm{Id} 2, \mathrm{Id} 3\}$.

- Note: you do not need to solve.
- $\mathrm{R}=1000+100 *$ (your birth month) + (birth date). For example, May 14th gives 1514 Ohms.

3) Ideal Silicon Diodes. Assume the diodes in this circuit are ideal silicon diodes:

- $\mathrm{Vd}=0.7 \mathrm{~V} \quad \mathrm{Id}>0$
- $\mathrm{Id}=0 \quad \mathrm{Vd}<0.7 \mathrm{~V}$
- $\mathrm{R}=1000+100 *$ (your birth month) + (birth date). For example, May 14th gives 1514 Ohms.

R	Id1	V1	V2	V3	V4

4) AC to DC: Analysis: Determine V1 and V2 (both DC and AC) for the following AC to DC converter

R	V 1		V 2	
	DC	AC	DC	AC

5) Clipper Circuit: Determine the resistors and zener votlages to implement the following function: $Y=f(X)$. Assume

- Ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- $\mathrm{R}=1000+100^{*}$ (your birth month) + (birth date)

R $1000+100^{*}$ mo day	R0	R1	Vz1	R2	Vz2

ECE 320 - Final (pt 2) - Name

Transistors and Mosfets
6) Determine the current gain, β. Also draw the load line and determine the operating point when Vin $=5 \mathrm{~V}$

R $1000+100^{*}$ Mo + Day	Current Gain hfe $=$ beta	Load Line x-intercept (Volts)	Load Line y-intercept (mA)	Vce Vin $=5 \mathrm{~V}$	Ic Vin $=5 \mathrm{~V}$

7) Design a Schmitt Trigger \& transistor switch so that

- Turns on the LED at 200 mA when RT >1500 Ohms
- Turns off the LED when RT < 1200 Ohms

Assume

- $\mathrm{R}=1000+100^{*}$ (your birth month) + (your birth date)
- $\operatorname{Vce}($ sat $)=0.2 \mathrm{~V}$
- Current gain $(\beta)=100$

8) DTL Logic: Determine the voltages and currents for the following DTL logic gage. Assume

- $\mathrm{R}=1000+100^{*}$ (your birth month) + (birth day)
- Ideal silicon diodes ($\mathrm{Vf}=0.7 \mathrm{~V}$), and
- Ideal 3904 transistors $(\mathrm{Vbe}=0.7 \mathrm{~V}, \mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}, \beta=100)$

R $1000+100^{*} m 0+$ day	I1	I2	I3	V4	V5

9) MOSFET Load Line: For the following MOSFET circuit

- Determine the transconductance gain, kn,
- Draw the load line (x and y intercept), and
- Determine $\{\mathrm{Vds}$, Ids $\}$ when $\mathrm{Vg}=7 \mathrm{~V}$

R $1000+100^{*}$ mo + day	kn transconductance gain	Load Line $x=$ intercept	Load Line y intercept	Vds $\mathrm{Vg}=7 \mathrm{~V}$	Ids $\mathrm{Vg}=7 \mathrm{~V}$	Operating Region off $/$ active / ohmic

10) CMOS Logic
a) Design a CMOS logic gate to implement $\mathrm{Y}=\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$

