ECE 320 - Homework #2

Semiconductors, PN Junction, Ideal Diodes. Due Wednesday, September 8th

Please make the subject "ECE 320 HW#2" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Semiconductors

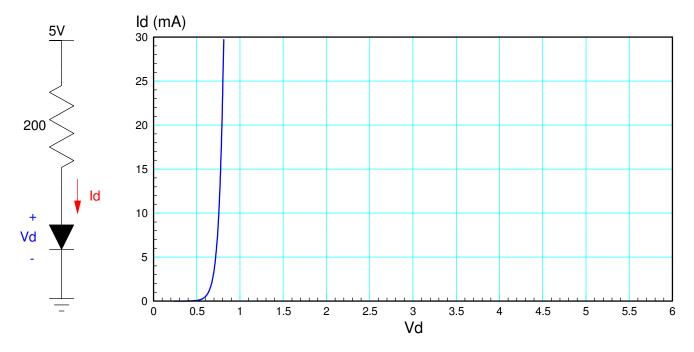
- 1) Why does the voltage drop across a pn junction decrease as temperature increases?
- 2) What doping of Boron (p-type) do you need to make an 1206 resistor have a resistance of 2200 Ohms? The dimensions of an 1206 resistor are

$$L = 3.20$$
mm, $W = 1.60$ mm, $H = 0.95$ mm

3) A thermistor has the following resistance - voltage relationship

$$R = 1000 \exp\left(\frac{3905}{T + 273} - \frac{3905}{298}\right) \Omega$$

where T is the temperature in degrees C. What is the resistance at

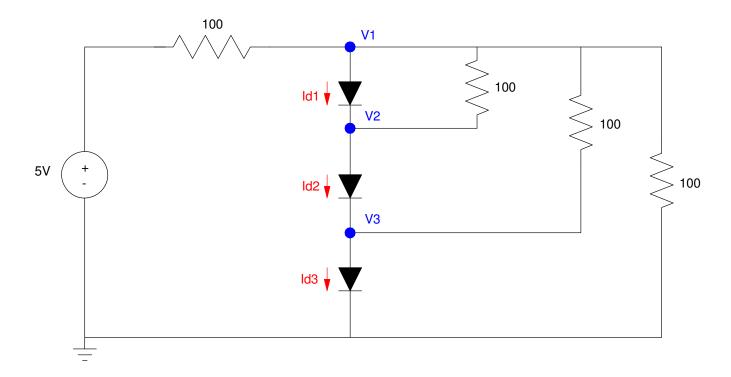

- -48F Coldest day in Fargo (Jan 8, 1887)
- 0F Recommended temperature of a freezer
- +40F Recommended temperature of a refrigerator
- +114F Hottest day in Fargo (Jul 6, 1936)

Diode VI Characteristics

Assume the VI characteristics for a diode are

$$V_d = 0.052 \cdot \ln\left(\frac{I_d}{10^{-8}} + 1\right)$$
 $I_d = 10^{-8} \left(\exp\left(\frac{V_d}{0.052}\right) - 1\right)$

- 4) For the 1-diode circuit (next page 200 Ohms is red black brown)
 - a) Draw the load-line for the following circuit (next page). Determine Vd and Id from the graph.
 - b) Write the voltage node equations and solve for Vd and Id assuming the VI equations above
- 5) Determine Vd and Id assuming an ideal silicon diode (Vf = 0.7V)
- 6) Build this circuit in CircuitLab and solve for Vd and Id. (Use a 1N4004 diode)
- 7) Build this curcuit on your breadboard and measure Vd. From this, compute Id
 - Include a photo to receive credit for this problem


	Vd	ld
4a) Graphical solution		
4b) Numeric Solution		
5) Ideal Diode		
6) Simulation (CircuitLab)		
7) Lab (experimental)		

Problem 4 to 7

Problem 8 - 10: Note: If you don't have four 100 Ohm resistors (brown - black - brown), replace the resistors with ones you *do* have - ideally all the same and close to 100 Ohms. Do problems 8 - 11 using the resistors you use for the experimental results (problem #10).

- 8) Write the voltage node equations assuming nonlinear diodes. Solve for {V1, V2, and V3} using Matlab.
- 9) Assume ideal silicon diodes. (Vf = 0.7V). Determine {V1, V2, and V3}.
- 10) Simulate this circuit in CircuitLab to determine {V1, V2, and V3}
- 11) Build this circuit with your breadboard and measure {V1, V2, V3}
 - Include a photo to receive credit for problem #11

	V1	V2	V3
8) Numeric Solution			
9) Ideal Diode			
10) Simulation (CircuitLab)			
11) Lab (experimental)			

Problem 8-11. Change the resistors if you don't have four 100 Ohm resisotrs available