ECE 320-Quiz \#8 - Name

DTL, TTL Logic, MOSFETs.

DTL Logic Gate:

Determine the voltges and currents for the following DTL gate. Assume

- Ideal 3904 transistors $(\mathrm{Vbe}=0.7 \mathrm{~V}, \mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}$, gain $=100)$
- Ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- $\mathrm{R}=1000+100$ (Birth Month $)+$ (Birth Day). For example, May 14th gives $\mathrm{R}=1514 \mathrm{Ohms}$.

$\frac{\mathrm{R}}{1000+100^{*} \mathrm{mo}+\text { day }}$	V1	I2	V3	I4	V5
1514	0	0	4.894 V	69.864	$0.2 V$

The diodes on the left are all off

- The diode to 7 V is reversed, so it's off
- The other two diodes need 2.1 V to overcome the three diodes to ground

This results in

- $\mathrm{V} 1=0$
- $\mathrm{I} 2=0$

To find I4 and V3:

$$
\begin{aligned}
& I_{4}=\left(\frac{5 V-2.1 V}{40 k+1514}\right)=69.86 \mu A \\
& V_{3}=5 V-1514 \Omega \cdot 69.86 \mu A=4.894 V
\end{aligned}
$$

V5 is saturated: I4 allows 6.986 mA to flow through the second transistor. R limits the current to 3.3 mA

$$
\beta I_{b}>I_{c}
$$

DTL Logic Gate:

Determine the voltges and currents for the following DTL gate. Assume

- Ideal 3904 transistors $(\mathrm{Vbe}=0.7 \mathrm{~V}, \mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}$, gain $=100)$
- Ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- $\mathrm{R}=1000+100$ (Birth Month $)+$ (Birth Day). For example, May 14th gives $\mathrm{R}=1514$ Ohms.

	v1	${ }^{12}$	v3	14	v5
1514	5.30V	97.50uA	0.2 V	OuA	4.818 V

Open Collector Logic

Determine the voltages and currents for the following circuit. Assume

- Ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- \quad Vbe $=0.7 \mathrm{~V}$
- $\beta=100$
- $R=1000+100$ (Birth Month) + (Birth Day). For example, May 14th gives $R=1514$ Ohms.

$\frac{\mathrm{R}}{1000+100^{*} \mathrm{mo}+\text { day }}$	I1	I2	I3	V4
1514	0	90uA allows 9 mA	90uA allows 9 mA	$\begin{gathered} 0.2 \mathrm{MA} \\ 9 \mathrm{~mA} \\ \hline .794 \mathrm{~mA} \end{gathered}$

TTL Logic
Determine the voltges and currents for the following DTL gate. Assume

- Ideal 3904 transistors (Vbe $=0.7 \mathrm{~V}$, $\mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}, \beta=2$ (left) or 100 (right) transistor
- $R=1000+100$ (Birth Month $)+($ Birth Day). For example, May 14th gives $R=1514$ Ohms.

$\begin{array}{\|c} \mathrm{R} \\ 1000+100^{\mathrm{m} o+\text { day }} \end{array}$	V1	V2	V3	14	15
1514	1.4V	0.7V	0.2V	45uA	135uA

MOSFET \& Load Lines

For the following MOSFET

- Determine the transconductance gain, kn,
- Draw the load line for the following circuit.
- Mark the operating point for $\mathrm{Vgs}=5 \mathrm{~V}$

kn : Pick a point (A) in the saturated region

$$
\begin{aligned}
& I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2} \\
& 6 m A=\frac{k_{n}}{2}(5 \mathrm{~V}-1 \mathrm{~V})^{2} \\
& k_{n}=0.75 \frac{\mathrm{~mA}}{V^{2}}
\end{aligned}
$$

MOSFETs

For the following MOSFET circuit, assume

- $\mathrm{k}_{\mathrm{n}}=0.5 \mathrm{~A} / \mathrm{V}^{2}$
- $\mathrm{V}_{\mathrm{th}}=2.00 \mathrm{~V}$

Determine the operation point (Vds , Ids) for $\mathrm{Vg}=10 \mathrm{~V}$
$\left.\begin{array}{|c|c|c|}\hline \mathrm{R} & \mathrm{Vds} \\ 1000+100^{*} \mathrm{mo}+\text { day }\end{array} \quad \begin{array}{c}\mathrm{Ids}=10 \mathrm{~V} \\ \mathrm{Vg}=10 \mathrm{~V}\end{array}\right]$

Ohmic Region: $V_{d s}<V_{g s}-V_{t h}$

$$
I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s}
$$

Saturated Region: $V_{d s}>V_{g s}-V_{t h}$

$$
I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)_{2}
$$

Assume ohmic, Write 2 equations for 2 unknowns

$$
\begin{aligned}
& I_{d s}=0.5\left(10-2-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}+1514 I_{d s}=10
\end{aligned}
$$

Solving gives two solutions

$$
\begin{aligned}
& \mathrm{Ids}=6.6039 \mathrm{~mA} \\
& \mathrm{Vds}=0.0016 \mathrm{~V} \\
& \mathrm{Rds}=\mathrm{Vds} / \mathrm{Ids}=0.25 \mathrm{Ohms}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{Ids}=-3.97 \mathrm{~mA} \\
& \mathrm{Vds}=16.001 \mathrm{~V}
\end{aligned}
$$

The former is the correct solution

