ECE 320-Quiz \#8 - Name

DTL, TTL Logic, MOSFETs.

DTL Logic Gate:

Determine the voltges and currents for the following DTL gate. Assume

- Ideal 3904 transistors $(\mathrm{Vbe}=0.7 \mathrm{~V}, \mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}$, gain $=100)$
- Ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- $R=1000+100$ (Birth Month) + (Birth Day). For example, May 14th gives $R=1514$ Ohms.

R $1000+100^{*} \mathrm{mo}+$ day	V1	I2	V3	I4	V5

DTL Logic Gate:

Determine the voltges and currents for the following DTL gate. Assume

- Ideal 3904 transistors $(\mathrm{Vbe}=0.7 \mathrm{~V}, \mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}$, gain $=100)$
- Ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- $\mathrm{R}=1000+100$ (Birth Month $)+$ (Birth Day). For example, May 14th gives $\mathrm{R}=1514 \mathrm{Ohms}$.

R	V1	I2	V3	I4	V5
$1000+100^{*}$ mo +day					

Open Collector Logic

Determine the voltages and currents for the following circuit. Assume

- Ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$
- $\beta=100$
- $\mathrm{R}=1000+100$ (Birth Month $)+$ (Birth Day). For example, May 14th gives $\mathrm{R}=1514$ Ohms.

R	I1	I2	I3	V4
$1000+100^{*}$ mo +day				

TTL Logic

Determine the voltges and currents for the following DTL gate. Assume

- Ideal 3904 transistors (Vbe = 0.7V, Vce(sat) $=0.2 \mathrm{~V}, \beta=2$ (left) or 100 (right) transistor
- $R=1000+100$ (Birth Month) + (Birth Day). For example, May 14th gives $R=1514$ Ohms.

R	V1	V2	V3	I4	I5

MOSFET \& Load Lines

For the following MOSFET

- Determine the transconductance gain, kn,
- Draw the load line for the following circuit.
- Mark the operating point for $\mathrm{Vgs}=5 \mathrm{~V}$

R $1000+100^{*} \mathrm{mo}+$ day	kn $\mathrm{A} / \mathrm{V} 2$	Load Line show on graph	Vds $\mathrm{Vg}=5 \mathrm{~V}$	Ids $\mathrm{Vg}=5 \mathrm{~V}$

MOSFETs

For the following MOSFET circuit, assume

- $\mathrm{k}_{\mathrm{n}}=0.5 \mathrm{~A} / \mathrm{V}^{2}$
- $\mathrm{V}_{\mathrm{th}}=2.00 \mathrm{~V}$

Determine the operation point (Vds, Ids) for $\mathrm{Vg}=10 \mathrm{~V}$

R	Vds	Ids
$1000+100^{*}$ mo + day	$\mathrm{Vg=10V}$	$\mathrm{Vg=10V}$

Ohmic Region: $V_{d s}<V_{g s}-V_{t h}$

$$
I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s}
$$

Saturated Region: $V_{d s}>V_{g s}-V_{t h}$

$$
I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)_{2}
$$

