ECE 320 - Solution to Homework \#1

Semiconductors, PN Junction, Diode VI Characteristics. Due Monday, Jan 26th
Assume the resistance of a thermistor is

$$
R=1000 \cdot e^{-0.04(T-25)} \Omega
$$

1) Using MATLAB (or like program),

- Plot the resistance of a thermistor vs. temperature from -20C to +20C
- Plot the voltage at Y from -20 C to +20 C

SciLab Code:

```
-->T = [-20:20]';
-->R = 1000 * \(\exp (-0.04 *(T-25))\);
-->plot(T,R)
-->xlabel('Temperature (C)');
-->ylabel('Resistance (Ohms)');
```


$-->V=R . /(1000+R)$ * 10;
-->plot(T, V);
-->plot(T, V);
-->xlabel('Temperature (C)');
-->ylabel('Volts');

2) Determine the temperature if the voltage at Y is $2.00 \mathrm{~V}, 4.00 \mathrm{~V}$, and 6.00 V Solving backwards:

$$
\begin{array}{ll}
V=\left(\frac{R}{R+1000}\right) 10 V & R=\left(\frac{V}{10-V}\right) 1000 \Omega \\
R=1000 \cdot e^{-0.04(T-25)} \Omega & T=25\left(1-\ln \left(\frac{R}{1000}\right)\right)
\end{array}
$$

V (Volts)	R (Ohms)	Teperature (C)
2 V	250	59.6
4 V	666	35.1
6 V	1,500	14.8

PN Junction:

3) Write N equations to solve for the currents I1, I2, and I3. Assume for each diode

$$
I_{d}=I_{d s s} \cdot\left(e^{20 V_{d}}-1\right) A \quad I_{d s s}=1.66 \cdot 10^{-8} \mathrm{~A}
$$

Writing votlage node equations

$$
\begin{aligned}
& \left(\frac{V_{1}-5}{1 k}\right)+\left(\frac{V_{1}-V_{2}}{1 k}\right)+\left(\frac{V_{1}-V_{3}}{1 k}\right)+\left(\frac{V_{1}}{1 k}\right)+I_{d s s} \cdot\left(e^{20\left(V_{1}-V_{2}\right)}-1\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{1 k}\right)+I_{d s s} \cdot\left(e^{20\left(V_{2}-V_{3}\right)}-1\right)-I_{d s s} \cdot\left(e^{20\left(V_{1}-V_{2}\right)}-1\right)=0 \\
& \left(\frac{V_{3}-V_{1}}{1 k}\right)+I_{d s s} \cdot\left(e^{20\left(V_{3}\right)}-1\right)-I_{d s s} \cdot\left(e^{20\left(V_{2}-V_{3}\right)}-1\right)=0
\end{aligned}
$$

4) Solve for I1, I2, and I3 (not easy....)

Create a function in SciLab which

- You guess V1, V2, V3
- It computes the error in the three equations (currents should sum to zero)
- Returns the sum square error
function $\mathrm{J}=\operatorname{cost3}(\mathrm{z})$
// y = cost(z)
// ECE 320 homework set \#1
// JSG - 1/22/15
V1 = $\mathrm{z}(1)$;
V2 = z(2);
V3 = z(3);
Idss = 1.66e-8;
E1 = (V1-5) $+(\mathrm{V} 1-\mathrm{V} 2)+(\mathrm{V} 1-\mathrm{V} 3)+1000 * I d s s^{*}(\exp (20 *(V 1-\mathrm{V} 2)-1))$;
E2 $=(\mathrm{V} 2-\mathrm{V} 1)+1000^{*}$ Idss* $\left(\exp \left(20^{*}(\mathrm{~V} 2-\mathrm{V} 3)-1\right)\right)-1000^{*} \mathrm{Idss} *\left(\exp \left(20^{*}(\mathrm{~V} 1-\mathrm{V} 2)-1\right)\right)$;
E3 $=(\mathrm{V} 3-\mathrm{V} 1)+1000^{*} \mathrm{Idss}^{*}\left(\exp \left(20^{*}(\mathrm{~V} 3)-1\right)\right)-1000^{*} \mathrm{Idss}^{*}\left(\exp \left(20^{*}(\mathrm{~V} 2-\mathrm{V} 3)-1\right)\right)$;
$J=E 1 * E 1+E 2 * E 2+E 3 * E 3 ;$
endfunction

Callin it:

$$
\begin{aligned}
& \text {-->[a,b] = leastsq(cost3,[2.1,1.4,0.7]) } \\
& \text { b = } \\
& 1.8994883 \quad 1.2881626 \quad 0.6568849 \\
& \text { a }= \\
& \text { 4.853D-17 }
\end{aligned}
$$

The answer is approximately:

$$
\begin{aligned}
& \mathrm{V} 1=1.8994883 \\
& \mathrm{~V} 2=1.2881626 \\
& \mathrm{~V} 3=0.6568849
\end{aligned}
$$

5) Give 2 equations to solve for 2 unknowns: Vd and Id

$$
\begin{aligned}
& I_{d}=\left(\frac{10-V_{d}}{1 k}\right) \\
& I_{d}=I_{d s s} \cdot\left(e^{20 V_{d}}-1\right) A
\end{aligned}
$$

6) Use load-line analysis to determine Id and Vd (graphical solution)
```
-->Idss = 1.66e-8;
-->Id = [0:0.01:10]' * 0.001;
-->Vd1 = 10 - 1000*Id;
-->Vd2 = log(Id/Idss+1)/20;
-->plot(Vd1,Id*1000,Vd2,Id*1000)
-->xlabel('Vd (Volts)');
-->ylabel('Id (mA)');
```


7) Find Id and Vd numerically

- Guess Id
- Compute Vd using the first equation
- Compute Vd using the second equation
- Iterate until the two match

Iterating until the difference is zero

$\mathbf{I d}=9.338 \mathrm{~mA}$

$\mathbf{V d}=0.6620 \mathrm{~V}$

ECE 321 - Lab (Thrusday open lab: room 235)

(note: The TA and/or instructor will be in lab from 11AM - 3PM if you need help. You should have 24/7 access to room 235 and 237, however, so you can do the lab any time it works for you and your lab partners)
8) Build the circuit from problem 1 and measure the voltage of three items. (snow, ice water, your hands, room 235, etc).

Fom your voltage measurement, compute

- The resistance of the thermistor, and
- The temperature of that item

9) Build the circuit from problem 3 and measure the actual voltage across the diodes and resistors. From the voltages, compute the actual I1, I2, and I3
