ECE 321 - Homework \#2

Ideal diode, LEDs, Clippers - Due Monday, February 2nd
Assume ideal silicon diodes ($\mathrm{Vf}=0.7 \mathrm{~V}$). Determine the currents for the following circuit

1) $\mathrm{Vin}=+10 \mathrm{~V}$

Since the current is trying to flow down, assume

- I1 > 0 (first three diodes are on)
- $\mathrm{I} 2=0 \quad$ (reverse biased diode is off)
- I3 = 0 (the lower diode is reverse biased)

Then

$$
\mathrm{Vo}=2.1 \mathrm{~V}
$$

The currents have to balance

$$
\begin{aligned}
& \left(\frac{10 \mathrm{~V}-2.1 \mathrm{~V}}{1 k}\right)=I_{1}+I_{2}+I_{3} \\
& \left(\frac{10 \mathrm{~V}-2.1 \mathrm{~V}}{1 k}\right)=I_{1} \\
& I_{1}=7.9 \mathrm{~mA}
\end{aligned}
$$

Check: For the diodes in I1 to be on, Id > 0. It is.
2) $\operatorname{Vin}=-10 \mathrm{~V}$

Since the input is trying to push current counter-clockwise (up through the diodes), assume

- $\mathrm{I} 1=0 \quad$ (current goes backwards)
- $\mathrm{I} 2>0$ (current goes the correct way through the diode)
- I3 = 0 (current goes backwards through the top diode)
$\mathrm{Vo}=-0.7 \mathrm{~V}$
I2 is then

$$
\begin{aligned}
& I_{d}=\left(\frac{10-0.7}{1 k}\right)=9.3 m A \\
& I_{2}=-9.3 m A
\end{aligned}
$$

Assume ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$. Determine the currents for the following circuit
3) $\mathrm{Vin}=1 \mathrm{~V}$

There are 3 diodes - meaning 8 permutations. One of the eight is correct ($\mathrm{Vd}<0.7 \mathrm{~V}$ for off diodes, Id >0 for on diodes)

Assume the diodes are off - off - off.
Solving using voltage nodes

$$
\begin{aligned}
& \left(\frac{1-Y}{1 k}\right)=I_{1}+I_{2}+I_{3}+I_{4} \\
& \left(\frac{1-Y}{1 k}\right)=0+0+0+\left(\frac{Y}{1 k}\right) \\
& Y=0.5 \mathrm{~V}
\end{aligned}
$$

resultig in

I1	I2	I3	I4
0	0	0	0.5 mA

4) Vin $=5 \mathrm{~V}$ (same as homework \#1)

Referring to homework \#1, assume the diodes are off - on - on

$$
\begin{aligned}
& \left(\frac{5-Y}{1 k}\right)=I_{1}+I_{2}+I_{3}+I_{4} \\
& \left(\frac{5-Y}{1 k}\right)=0+\left(\frac{Y-1.4 V}{1 k}\right)+\left(\frac{Y-0.7 V}{1 k}\right)+\left(\frac{Y}{1 k}\right) \\
& Y=1.775 \mathrm{~V}
\end{aligned}
$$

Check: Is diode \#1 off?

$$
1.775 \mathrm{~V}<2.1 \mathrm{~V} \quad \text { yes }
$$

Then

$$
\begin{aligned}
& I_{1}=0 \\
& I_{2}=\left(\frac{Y-1.4 \mathrm{~V}}{1 \mathrm{k}}\right)=0.375 \mathrm{~mA} \\
& I_{3}=\left(\frac{Y-0.7 \mathrm{~V}}{1 \mathrm{k}}\right)=1.075 \mathrm{~mA} \\
& I_{4}=\left(\frac{Y}{1 \mathrm{k}}\right)=1.775 \mathrm{~mA}
\end{aligned}
$$

5) $\mathrm{Vin}=10 \mathrm{~V}$

Assume all diodes are on

$$
\begin{aligned}
& \mathrm{Y}=2.1 \mathrm{~V} \quad \text { (from the three diodes in series) } \\
& I_{2}=\left(\frac{\mathrm{Y}-1.4 \mathrm{~V}}{1 \mathrm{k}}\right)=0.7 \mathrm{~mA} \\
& I_{3}=\left(\frac{Y-0.7 \mathrm{~V}}{1 \mathrm{k}}\right)=1.4 \mathrm{~mA} \\
& I_{4}=\left(\frac{Y-0 \mathrm{~V}}{1 \mathrm{k}}\right)=2.1 \mathrm{~mA}
\end{aligned}
$$

To find I1:

$$
\begin{aligned}
& \left(\frac{10-Y}{1 k}\right)=I_{1}+I_{2}+I_{3}+I_{4} \\
& 7.9 m A=I_{1}+0.7 m A+1.4 m A+2.1 m A \\
& I_{1}=2.8 m A
\end{aligned}
$$

Check:
Id >0 if the diode is on
This checks for all three diodes
6) Design a circuit which produces the color pink for Valentine's day

	Color	Vf	mcd
Piranah RGB LED	Red	$1.9 \mathrm{~V} @ 20 \mathrm{~mA}$	$8000 @ 20 \mathrm{~mA}$
	Green	$3.0 \mathrm{~V} @ 20 \mathrm{~mA}$	$8000 @ 20 \mathrm{~mA}$
	Blue	$3.0 \mathrm{~V} @ 20 \mathrm{~mA}$	$8000 @ 20 \mathrm{~mA}$
White 1W	White	$3.3 \mathrm{~V} @ 250 \mathrm{~mA}$	100 lumens @ 350mA

Pink:

- Red $=15 \mathrm{~mA}$
- Green $=0 \mathrm{~mA}$
- Blue $=5 \mathrm{~mA}$

LEDs are diodes - meaning the voltage drop is approximately constant as long as Id >0
Assume a +5 V source
To set the current, add a resistor:
Red:

$$
R_{r}=\left(\frac{5 V-1.9 V}{15 m A}\right)=207 \Omega
$$

Green:

$$
R_{g}=\left(\frac{5 V-3.0 V}{0 m A}\right)=\infty
$$

Blue:

$$
R_{b}=\left(\frac{5 V-3.0 V}{5 m A}\right)=400 \Omega
$$

7) Design a circuit with a rotory switch which can power the 1W white LED as a flashlight with three brightness levels:

- 100 lumens
- 30 lumens
- 5 lumens
- Off

Assume a +5 V source:
100 Lumens:

$$
\mathrm{I}=350 \mathrm{~mA}
$$

$$
R_{100}=\left(\frac{5 V-3.3 V}{350 \mathrm{~mA}}\right)=4.86 \Omega
$$

30 lumens

$$
\begin{aligned}
& I=\left(\frac{301 \text { lumens }}{\text { 100lumens }}\right) 350 \mathrm{~mA}=105 \mathrm{~mA} \\
& R_{30}=\left(\frac{5 \mathrm{~V}-3.3 \mathrm{~V}}{105 \mathrm{~A}}\right)=16.2 \Omega
\end{aligned}
$$

5 lumens

$$
\begin{aligned}
& I=\left(\frac{5 \text { lumens }}{100 \text { lumens }}\right) 350 \mathrm{~mA}=17.5 \mathrm{~mA} \\
& R_{5}=\left(\frac{5 \mathrm{~V}-3.3 \mathrm{~V}}{17.5 \mathrm{~mA}}\right)=97.1 \Omega
\end{aligned}
$$

0 lumens

$$
\mathrm{I}=0
$$

$$
\mathrm{R}=\text { infinity }
$$

8) Design a circuit which approximates the funtion: y ? $10 \sin ? x / 10$?

Draw in straight lines with slopes of $1,1 / 2,1 / 4,1 / 8$, etc. to approximate the curve (shown in red) Each drop in slope from 1 to $1 / 2$ to $1 / 4$, etc is an additional stage.

The zener voltage is when that stage turns on (read on the Y axis)
As show, there are only two corners, meaning two stages

9) Measure the V/I characteristics for an LED in the lab from 0 mA to 20 mA .

Piranah Red LED						
1.14 mA	4.18 mA	7.10 mA	10.54 mA	13.97 mA	16.38 mA	19.86 mA
1.77 V	1.84 V	1.87 V	1.90 V	1.93 V	1.94 V	1.96 V

10) Approximate this curve with a function
```
-->Id = [1.14, 4.18,7.10,10.54,13.97,16.38,19.86]' ;
-->Vd = [1.77,1.84,1.87,1.90,1.93,1.94,1.96]' ;
-->X = [Vd, Vd.^0];
-->Y = log(Id);
-->A = inv(X'*X)*X'*Y
```

 14.897863
 - 26.071782
 Meaning

$$
\begin{aligned}
& \ln \left(I_{d}\right) \approx 14.89 V_{d}-26.07 \\
& I_{d} \approx e^{-26.07} \cdot e^{14.89 V_{d}} m A \\
& I_{d} \approx 4.76 \cdot 10^{-12} \cdot\left(e^{14.89 V_{d}}+1\right) \mathrm{mA}
\end{aligned}
$$

```
-->V = [1.7:0.01:2]';
->I = \operatorname{exp}(A(1)*V + A(2));
-->plot(V,I,'-',Vd,Id,'.')
-->xlabel('Vd (Volts)');
-->ylabel('Id (mA)');
```


