ECE 320 - Homework \#5

Transistor Theory, Transistor Switch, H-Bridges. Due Monday, February 15th

1) Assume the V / I characteristics for a transistor are as shown below.

- Label the off / active / saturated regions
- Determine the current gain, β

$$
\beta=\frac{I_{c e}}{I_{b e}}=\frac{100 \mathrm{~mA}}{5 \mathrm{~mA}}=20
$$

2) On the previous graph,

$\operatorname{Vin}=3.0 \mathrm{~V}$

$$
\begin{aligned}
& I_{b}=\left(\frac{3 V-0.7 \mathrm{~V}}{1 \mathrm{k}}\right)=2.3 \mathrm{~mA} \\
& I_{c}=\beta I_{b}=46 \mathrm{~mA} \\
& V_{c}=9-80 I_{c}=5.32 \mathrm{~V}
\end{aligned}
$$

Q-Point: $($ Vce $=5.32 \mathrm{~V}$, Ice $=46 \mathrm{~mA})$

$$
\begin{aligned}
& \text { Vin }=10.0 \mathrm{~V} \\
& \qquad I_{b}=\left(\frac{10 \mathrm{~V}-0.7 \mathrm{~V}}{1 \mathrm{k}}\right)=9.3 \mathrm{~mA} \\
& \\
& \beta I_{b}=186 \mathrm{~mA}
\end{aligned}
$$

The maximum current is

$$
\max \left(I_{c e}\right)=\frac{10 \mathrm{~V}-0.2 \mathrm{~V}}{80 \Omega}=122.5 \mathrm{~mA}
$$

so this is saturated

$$
\beta I_{b}>\max \left(I_{c}\right)
$$

The Q-point is then

$$
\begin{aligned}
& \text { Vce }=0.2 \mathrm{~V} \\
& \text { Ice }=122.5 \mathrm{~mA}
\end{aligned}
$$

Problem 3-7) Assume the following transistors

- NPN: $3904 \beta=100, I_{c e: \max }=100 \mathrm{~mA}$
- PNP: $3906 \beta=100, I_{e c: \max }=100 \mathrm{~mA}$

3) Transistor Switch: Design a circuit to allow your cell-phone to turn on and off a 3 W white LED

- Input: $0 \mathrm{~V} / 3.3 \mathrm{~V}$, capable of 5 mA
- Output: 3W white LED, Vf = 3.1V @ 300mA
- Relationship:

When the input is $3.3 \mathrm{~V}, 100 \mathrm{~mA}$ flows through the LED
When the input is $0 \mathrm{~V}, 0 \mathrm{~mA}$ flows through the LED
For 100 mA

$$
R_{c}=\left(\frac{10 \mathrm{~V}-3.1 \mathrm{~V}-0.2 \mathrm{~V}}{100 \mathrm{~mA}}\right)=67 \Omega
$$

For Rb

$$
I_{b}>\frac{I_{c}}{\beta}=1 m A
$$

Let $\mathrm{Ib}=2 \mathrm{~mA}$

$$
R_{b}=\left(\frac{3.3 V-0.7 \mathrm{~V}}{2 \mathrm{~mA}}\right)=1300 \Omega
$$

4) H-Bridge: Design a circuit to allow you to drive a DC motor forward and backwards

- Input: Four 0V / 10V signals, capable of driving 10mA
- Output: DC Motor which draws 100mA @ 10V
- Relationship: Depending upon the four inputs, drive the motor at $\{+10 \mathrm{~V}, 0 \mathrm{~V},-10 \mathrm{~V}\}$

Ib:

$$
I_{b}>\frac{I_{c}}{\beta}=\frac{100 \mathrm{~mA}}{100}=1 \mathrm{~mA}
$$

Let $\mathrm{Ib}=2 \mathrm{~mA}$
Rb :

$$
R_{b}=\left(\frac{10 V-0.7 V}{2 m A}\right)=4650 \Omega
$$

5) Test: Simulate one of these circuits in PartSim (switch or H-bridge)
6) Validation: Build one of these circuits and verify it's operation in lab.

Bonus! 1 point bonus on your final grade in ECE 320.
Make a short (1-3 minute) video where you

- Intruduce yourselves
- Present the requirements for your circuit
- Show the schematic and explain your analysis (keep it short)
- Show your simulation results (keep it short)
- Demonstrate that your circuit works

