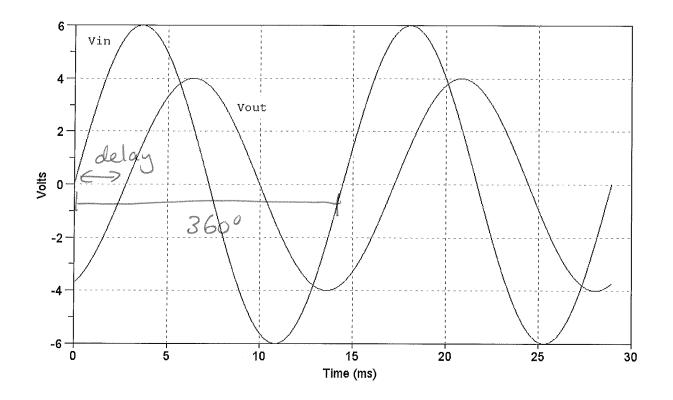
Complex Numbers and Phasors - January 26, 2017

1) For the following circuit, determine the phasor impedance for each element and the voltage, y(t)

Phasor Representation for					
$Vin = 5 \cos(20t)$		2H Inductor	Y		
5	+30	140	2.45/-11° 2.40 *-j 0.488		
y(t) =	2.45 cos (20E-11°)				

$$5\cos(20t)$$

$$Y = \begin{pmatrix} 100 \\ 100 + 100 + 340 \end{pmatrix}$$


$$= 2.45 \left(-110 \right)$$

2) For the following circuit, determine the phasor impedance for each element and the voltage, y(t)

Phasor Representation for				
$Vin = 5 \sin(20t)$	0.001F Capacitor	Y		
J 5	- 350	-2-j 2.236/-153°		
-2 cos (20E) + SIN (20E)				
y(t) =	2.236 cos (20t-153°)			

3) The input and output voltage as seen on an oscilloscope are shown below. Determine the following:

Gain from Vin to Vout	Phase Shift from Vin to Vout	Frequency (Hz)
46	-610	7142

period = 14ms
$$f = \int_{\text{period}} \frac{1}{70 \, \text{mm}} = 71 \, \text{Hz}$$

$$\text{phase} = -\left(\frac{12 \, \text{mm}}{70 \, \text{mm}}\right) 360^\circ = -61^\circ$$

4) A circuit has the following transfer function:

$$Y = \left(\frac{10s + 3}{s^2 + 15s + 100}\right)X$$

Find y(t) assuming

$$x(t) = 100 + 50\cos(10t)$$

$$y(t) = 3 + 33.3 \cos(10 + -1.7^{\circ})$$

$$X(4) = 100$$

$$S = 0$$

$$\left(\frac{100 \, 43}{-100}\right) = \frac{3}{100}$$

$$Y = \left(\frac{3}{100}\right) 100$$

$$Y = 3$$

$$X = 50 \cos(104)$$

$$S = \frac{100}{5}$$

$$\left(\frac{100 + 3}{5^{2} + 105 + 100}\right)_{S = \frac{1}{5} 10}$$

$$= \frac{1}{5} \frac{667}{100} \left(\frac{1}{50} \cos(104)\right)$$

$$= \frac{1}{5} \frac$$

5) A circuit has the following transfer function

$$Y = \left(\frac{10s + 3}{s^2 + 15s + 100}\right)X$$

What is the differential equation relating X and Y?

Bonus! It takes 109 million pounds of coal producing 327 million pounds of CO2 to power 300 million cell phones for a year. 2-3 million : 1 vaho

- How many pounds of Uranium does it take?
- How much CO2 does this Uranium produce?

36 to 54 pounds of uranium