1) The VI characteristic for an NPN transistor is shown on the following plot. From this plot, determine the current gain, β and label the active / saturated / off regions.

Current Gain (beta)	Active / Saturated / Off Regions
20	show on graph

2) Draw the load-line for the following circuit and mark the Q-point (Vce, Ice) for each Vin. Assume a transistor with

- $V_{b e}=0.7 \mathrm{~V}$
- $\beta=100$
- $V_{c e(s a t)}=0.2 \mathrm{~V}$
a) $\mathrm{Vin}=0 \mathrm{~V}$

Ib $=0$ (not enough voltage to turn on the diode)
b) $\mathrm{Vin}=2 \mathrm{~V}$

$$
I_{b}=\left(\frac{2 V-0.7 V}{4 k}\right)=325 \mu A
$$

$$
I_{c}=\beta I_{b}=32.5 \mathrm{~mA}
$$

c) $\mathrm{Vin}=5 \mathrm{~V}$

$$
\begin{aligned}
& I_{b}=\left(\frac{5 V-0.7 \mathrm{~V}}{4 k}\right)=1.07 \mathrm{~mA} \\
& \beta I_{b}=107 \mathrm{~mA}>91.5 \mathrm{~mA}
\end{aligned}
$$

Saturated: Vce $=0.2 \mathrm{~V}$

3) Assume each transistor has the following specificaitons:

- $\beta=100$
- $\mathrm{Vbe}=0.7 \mathrm{~V}$
- \quad Vce(sat) $=0.2 \mathrm{~V}$
- $\operatorname{Ic}(\max)=2 \mathrm{~A}$

Determine the currents I1 .. I5

I 1	I 2	I 3	I 4	I
0	$\mathbf{2 . 1 5 m A}$	$\mathbf{4 . 3 0 m A}$	0	$\mathbf{- 2 1 5 m A}$

$$
I_{2}=\left(\frac{5 V-0.7 V}{2 k}\right)=2.15 m A
$$

$$
\beta I_{b}=215 m A
$$

This transistor allows up to 215 mA to flow
$I_{3}=\left(\frac{5 V-0.7 V}{1 k}\right)=4.3 m A$
$\beta I_{b}=430 \mathrm{~mA}$
This transistor allows up to 430 mA to flow

The 8 Ohm resistor limits the total current to

$$
\left(\frac{5 V-0.2 V-0.2 V}{8 \Omega}\right)=575 m A
$$

The actual current is the smallest of these three: $\min (215 m A, 430 \mathrm{~mA}, 575 \mathrm{~mA})$
4) Assume each transistor has the following specificaitons:

- $\beta=100$
- $\mathrm{Vbe}=0.7 \mathrm{~V}$
- Vce(sat) $=0.2 \mathrm{~V}$
- $\operatorname{Ic}(\max)=2 \mathrm{~A}$

Determine the currents I1 .. I5

I 1	I 2	I 3	I 4	I
0	2.15 mA	4.30 mA	0	-57.5 mA

Same as problem \#3 but the 80 ohm resistor limits the current to

$$
\left(\frac{5 V-0.2 V-0.2 V}{80 \Omega}\right)=57.5 \mathrm{~mA}
$$

so I is the minimum of

$$
\mathrm{I}=\min (215 \mathrm{~mA}, 430 \mathrm{~mA}, 57.5 \mathrm{~mA})
$$

5) Determine the voltages and currents for the following transistor circuit. Assume

- $\beta=100$
- $\mathrm{Vbe}=0.7 \mathrm{~V}$
- $\quad \mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}$
- $\operatorname{Ic}(\max)=2 \mathrm{~A}$

Ib	Ic	Ie	Ve
524 uA	52.4 mA	53 mA	5.3 V

The voltage drop across the diode is 0.7 V , so $\mathrm{Ve}=5.3 \mathrm{~V}$
5.3 V across 100 Ohms is 53 mA

$$
\begin{aligned}
& I_{e}=I_{b}+I_{c} \\
& I_{e}=I_{b}+\beta I_{b} \\
& I_{b}=\left(\frac{I_{e}}{1+\beta}\right)=524 \mu A
\end{aligned}
$$

Bonus! According to the National Renewable Energy Lab, how many kWh could North Dakota produce in wind energy in a given year? (hint: the entire U.S. consumption of electricity in 2015 was 4 trillion kWh).

ans: $\mathbf{1 . 1}$ trillion kWh

This is enough to provide 25% of all the electricity used in the United States. At 10 cents / kWh, that would bring in $\$ 110$ billion to the North Dakota ecomony each year. To put that in perspective, that's more than double the entire state's GDP in 2015.
http://apps2.eere.energy.gov/wind/windexchange/wind_resource_maps.asp?stateab=nd
http://www.nrel.gov/docs/fy00osti/28054.pdf

