ECE 320 - Homework \#2

Phasors Review. Due Monday January 23rd, 2017

1a) Convert the following circuit to phasor notation

Phasor Representation of Circuit at $\mathrm{w}=0$ (red) and $\mathrm{w}=377$ (blue)

1b) Solve for $\mathrm{y}(\mathrm{t})$ using phasors.
Vin $=15$:

$$
\begin{aligned}
& \mathrm{w}=0 \\
& L \rightarrow j \omega L=j 0
\end{aligned}
$$

By voltage division:

$$
y=\left(\frac{100}{100+j 0}\right) \cdot 15=15
$$

Vin $=2 \sin (377 \mathrm{t})$
$\mathrm{w}=377$
$L \rightarrow j \omega L=j 188.5$

$$
V_{i n}=2 \sin (377 t) \rightarrow 0-j 2
$$

by voltage division

$$
\begin{aligned}
& Y=\left(\frac{100}{100+j 188.5}\right) \cdot(0-j 2) \\
& Y=0.9373 \angle-152^{0} \\
& y(t)=0.9373 \cos \left(377 t-152^{0}\right)
\end{aligned}
$$

To get the total input, add the two inputs together.
To get the total output, add the two outputs together

$$
y(t)=15+0.9373 \cos \left(377 t-152^{0}\right)
$$

2) Check your answer in PartSim.

PartSim Transient Response. Vin (blue) and Y (black)
As expected

- The DC level of Vout $=15 \mathrm{~V}$
- The peam if 0.973 V above the DC level (0.9373 computed)
- The output is a cosine delayed by about 135 degres (-152 degrees computed)

3a) Convert the following circuit to phasor notation
3b) Solve for $\mathrm{y}(\mathrm{t})$ using phasors.

Phasor Representation at $\mathrm{w}=0$ (blue) and $\mathrm{w}=377$ (red)
Vin $=15$

$$
\begin{aligned}
& \mathrm{w}=0 \\
& L \rightarrow j \omega L=j 0 \\
& C \rightarrow \frac{1}{j \omega C}=-j \infty
\end{aligned}
$$

By voltage division

$$
Y=\left(\frac{100}{100+j 0}\right) 15=15
$$

$$
\operatorname{Vin}=2 \sin (377 \mathrm{t})
$$

$$
\mathrm{w}=377
$$

$$
V_{i n}=2 \sin (377 t) \rightarrow 0-j 2
$$

$$
L \rightarrow j \omega L=j 188.5
$$

$$
C \rightarrow \frac{1}{j \omega C}=-j 26.5
$$

By voltage division

$$
\begin{aligned}
& -j 26.5 \| 100=25.63 \angle-75^{0} \\
& Y=\left(\frac{25.63 \angle-75^{0}}{25.63 \angle-75^{0}+j 88.5}\right) \cdot(0-j 2)=0.313 \angle 107^{0} \\
& y(t)=0.313 \cos \left(377 t+107^{0}\right)
\end{aligned}
$$

To get the total input, add the two inputs together.
To get the total output, add the two outputs together

$$
y(t)=15+0.313 \cos \left(377 t+107^{0}\right)
$$

4) Check your answer in PartSim.

PartSim Circuit

PartSim Transient Response showing Vin (blue) and Y (black)

As expected

- The DC level of Vout $=15 \mathrm{~V}$
- The peam if 0.297 V above the DC level (0.313 computed)
- The output is a cosine delayed by about 260 degres (-253 degrees $=+107$ degrees computed)

5) Determine the differential equation which satisfies the following transfer function

$$
Y=\left(\frac{100}{(s+3)(s+10)}\right) X
$$

Multiply out and cross multiply

$$
\left(s^{2}+13 s+30\right) Y=100 X
$$

meaning

$$
\frac{d^{2} y}{d t^{2}}+13 \frac{d y}{d t}+30 y=100 x
$$

or using prime notation

$$
y^{\prime \prime}+13 y^{\prime}+30 y=100 x
$$

6) Determine $y(t)$ assuming $x(t)$ is

$$
x(t)=3+4 \cos (5 t)
$$

Use superposition
$\mathrm{x}(\mathrm{t})=3$

$$
\begin{aligned}
& s=0 \\
& \left(\frac{100}{(s+3)(s+10)}\right)_{s=0}=3.333
\end{aligned}
$$

Output = gain * input

$$
Y=(3.333) \cdot 3=10
$$

$y(t)=4 \cos (5 t)$
$\mathrm{s}=\mathrm{j} 5$
$\left(\frac{100}{(s+3)(s+10)}\right)_{s=j 5}=1.533 \angle-85.6^{0}$
Output $=$ gain $*$ input

$$
\begin{aligned}
& Y=\left(1.533 \angle-85.6^{0}\right) \cdot(4 \cos (5 t)) \\
& y(t)=6.13 \cos \left(5 t-85.6^{0}\right)
\end{aligned}
$$

Add the two inputs together to get the total input
Add the two outputs together to get the total output

$$
y(t)=10+6.13 \cos \left(5 t-85.6^{0}\right)
$$

