ECE 320 - Homework \#7

DC to AC Converter, SCR. Due Monday February 27th, 2017

1) Determine the Fourirer Series approximation for the following waveform out to 5 terms

$$
\mathrm{V}(\mathrm{t}) \approx \mathrm{a}_{0}+\mathrm{a}_{1} \cos \left(\frac{2 \pi}{\mathrm{~T}} \mathrm{t}\right)+\mathrm{b}_{1} \sin \left(\frac{2 \pi}{\mathrm{~T}} \mathrm{t}\right)+\mathrm{a}_{2} \cos \left(\frac{4 \pi}{\mathrm{~T}} \mathrm{t}\right)+\mathrm{b}_{2} \sin \left(\frac{4 \pi}{\mathrm{~T}} \mathrm{t}\right)
$$

First, input V(t) into Matlab:

```
>> t = [0:0.001:4]';
>> V = 0*t;
>> V(1:1000)= 1;
>> V(1000:2000) = 8;
>> V(2000:3000) = 1;
> V (3000:4000) = -6;
```

Now, find the Fourier coefficients. Just to show off, take it out to 20 terms:

```
function [c] = four20( x )
N = length(x);
t = [1:N]' /N * 2 * pi;
a = zeros(20,1); % cos() terms
b = zeros(20,1); % sin() terms
for n=1:20
    a(n) = sum( cos(n*t) .* x ) / (N/2);
    b(n) = sum( sin(n*t) .* x ) / (N/2);
end
c = a - j*b;
end
```

The DC terms (a0) is:

```
>> DC = mean(V)
    0.9980
```

The other 20 terms are:

```
>> c = four20(V);
>> N = [1:20]';
>> [N,real(c),imag(c)]
```

harmonic	$\cos ()$	$-\sin ()$
1.0000	-4.4516	-4.4633
2.0000	-0.0005	0.0000
3.0000	1.4902	-1.4784
4.0000	-0.0040	-0.0000
5.0000	-0.8865	-0.8983
6.0000	-0.0005	0.0000
7.0000	0.6413	-0.6296
8.0000	-0.0040	-0.0000
9.0000	-0.4904	-0.5021
10.0000	-0.0005	0.0000
11.0000	0.4098	-0.3981
12.0000	-0.0040	-0.0001
13.0000	-0.3380	-0.3498

Checking, plot $\mathrm{V}(\mathrm{t})$ along with it's Fouier expansion out to N terms

```
Yf = 0*t + DC;
for n = 1:20
    Yf = Yf + real(c(n))*cos(n*t*pi/2) - imag(c(n))*sin(n*t*pi/2);
    end
y20 = Yf;
```


Fourier Series expansion out to 1st harmonic

Fourier Series Expansion out to the 20th harmonic
2) How much of the energy in this waveform is in its 1 st harmonic (the 250 Hz term)?

```
>> mean(y1.^2) / mean(V.^2)
    0.8181
```


81.81 \% of the energy is in the 1st harmonic

In terms of Watts

$$
\begin{aligned}
& \left.\mathrm{P}=\frac{1}{2} \mathrm{~V}_{\mathrm{p}}^{2}=\frac{1}{2}\left(4.44^{2}+4.44^{2}\right) \quad \text { (sine and cosine term }\right) \\
& \mathrm{P}=19.71 \mathrm{~W}
\end{aligned}
$$

3) Assume a firing angle of 30 degrees. Determine

- The DC voltage at V2 and
- The peak-to-peak ripple at V2

```
t = [0:0.001:1]' * pi;
y = 18.6*sin(t);
y = y .* (t > pi/6);
plot(t,y);
DC = mean(y)
        11.0384
>> Vpp = max(y) - min(y)
        18.6000
```


Going through the filter:
DC Analysis: The inductor and capacitor don't affect the DC signal.

$$
\mathrm{Y}=11.0384 \mathrm{~V}
$$

AC Analysis: The inductor and capacitor do affect the AC (120 Hz) term, however

$$
\begin{aligned}
& L \rightarrow j \omega L=j 754 \Omega \\
& C \rightarrow \frac{1}{j \omega C}=-j 26.5 \Omega
\end{aligned}
$$

The resistor and capacitor in parallel are

$$
100 \Omega\left|\mid-j 26.5 \Omega=25.6 \angle-75^{0}\right.
$$

By voltage division then

$$
\begin{aligned}
& V_{2}=\left(\frac{25.6 \angle-75^{0}}{25.6 \angle-75^{0}+j 754}\right) V_{1} \\
& V_{2}=\left(0.0352 \angle-164^{0}\right) V_{1}
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=\left(0.0352 \angle-164^{0}\right) \cdot 18.6 V_{p p} \\
& V_{2}=0.653 V_{p p}
\end{aligned}
$$

Putting it together:

$$
\text { V2 }=11.0384 \mathrm{VDC} \text { with a ripple of } 0.653 \mathrm{Vpp}
$$

4) Simulate this circuit in PartSim to verify your results from problem \#3

AC to DC Converter for problem 3 and 4. The firing angle is 30 degrees.

First, input it into PartSim. SCR's are not available and I had problems getting a PNP/NPN to work, so a PNP transistor was used as an on/off switch

- 0 V at the base is on
- 20 V at the base is off

The voltages at the diode (D1) and loar (R1) are:

	Calculated	Simulated	Error
Vavg (DC)	11.0384 V	10.365 V	0.67 V
Vpp (AC)	653 mVpp	680 mVpp	$+3.9 \%$

