ECE 320 - Homework \#8

Comparitors, Schmitt Triggers. Due Monday March 6th, 2017

Term Project

i) Design a digital circuit
ii) Split this into three sections - each being a circuit we covered in ECE 320
iii) Design and test each section separately (separate requirements / analysis / test / validation)

Suggestion (if you don't like this one, it's OK to do your own thing)

Light-Controlled Fan

Input:

- Light Sensor
- On/Off Switch. $0 \mathrm{~V} / 5 \mathrm{~V}$ capable of driving 1 mA

Output:

- DC Motor (Fan) drawing up to 1A @ 10V

Relationship

- When the On/Off switch is off $(0 \mathrm{~V})$, the motor is off.
- When the on/off switch is on (5V)
- The fan turns off when the light level drops below 10 Lux
- The fan turns on when the light level goes above 15 Lux, and
- The fan remains unchanged (on/off) inbetween 10 and 15 lux
- "On" means 10 V to the DC motor

Tolerances:

- +/- 1 Lux
- +/- 1 Volt to the DC motor

- $\mathrm{A}, \mathrm{B}, \mathrm{X}$ are a $0 \mathrm{~V} / 5 \mathrm{~V}$ signal capable of driving 1 mA

Problem 1) Specify the overall system requirements (OK to use the above or to modify as you see fit)

Assume you have a light sensor where

$$
R=\frac{100,000}{L u x} \Omega
$$

2) Design a circuit which can drive a 1 k Ohm load which outputs

- 0 V when the light level is less than 10 Lux
- 5 V when the light level is more than 10 Lux

At 10 Lux

$$
R=10 k \Omega
$$

Add a voltage divider with a 10 k resistor. This turns 10 Lux into 2.5 V

When the light gets bright

- R goes to zero
- Va goes to zero
- Vout goes to 5 V
so connect the voltage divider to the - input

Comparitor. R2 is the light sensor
3) Verify your design in PartSim

I can't sweep R in PartSim, so instead replace the voltage divider with a DC votlage and sweep the voltage

Yup -

- It switches at 2.5 V
- The output goes low (0V) when the input goes high

3) Design a circuit which can drive a 1 k Ohm load which outputs

- 0V when the light level is less than 10 Lux
- 5 V when the light level is more than 15 Lux
- Remains unchanged between 10 Lux and 15 Lux

Use the same voltage divider (10k / R)
At 10 Lux
$\mathrm{R}=10 \mathrm{k}$
$\mathrm{Va}=2.50 \mathrm{~V}$
Vo goes low
At 15 Lux

$$
\mathrm{R}=6666
$$

$$
\mathrm{Va}=2.00 \mathrm{~V}
$$

Vo goes high

The gain you need is

$$
\text { gain }=\left(\frac{5 V-0 V}{2.5 V-2.0 V}\right)=25
$$

As Va increases, Vo decreases. Connect the divider to the - input

When $\mathrm{Vo}=0 \mathrm{~V}$, the output switches at 2.00 V . Connect the offset to 2.00 V

4) Verify your design in PartSim

PartSim dies when the Schmitt Trigger switches

Lab

5) Build the circuit for problem \#3. Verify that

- The output (A) is 5 V when the light level is less than 10 Lux (10 k Ohms)
- The output (A) is 0 V when the light level is more than 15 Lux (6666 Ohms)
- The output switches at 10 Lux and 15 Lux (100k and 6666 Ohms)
note: The lab is a little more fun if you add in a transistor switch to turn on and off a DC motor....

