ECE 320 - Homework #8

Schmitt Triggers, Boolean Logic, DTL Logic. Due Monday, March 5th, 2018

Assume

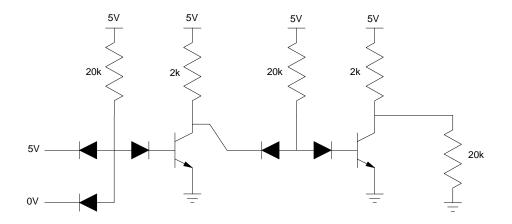
- MCP602 op-amps which operate at 0V / 5V and are capable of driving up to 30mA.
- 3904 NPN transistors which are capable of driving up to 200mA and have a current gain of 100.
- · A temperature sensor has the relationship

$$R = 1000 \cdot \exp\left(\frac{3905}{T} - \frac{3905}{298}\right) \Omega$$

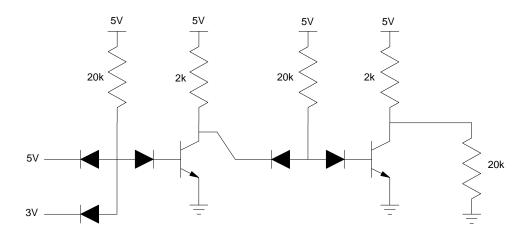
where T is the temperature in degrees Kelvin (0 Celsius = 273 Kelvin).

- A DC motor which draws 200mA at 10V.
- 1) Design a comparitor circuit which outputs
 - 0V when when the temperature is below 30C
 - 5V when the temperature is above 30C
- 2) Modify this circui tso that it can drive a DC motor which draws 200mA at 10V when turned on.
- 3) Build this circuit in lab and verify your design. (note: use a decade resistor in place of the temperature sensor when verifying what temperature / resistance the motor turns on).
- 4) Design a Schmitt Trigger which outputs
 - 0V when the temperature drops below 30C,
 - 5V when the temperature goes above 35C, and
 - No change for 30C < T < 35C

Boolean Logic


- 5) Design a circuit using NAND gates (circle the ones) to implement the following logic:
- 6) Design a circuit using NOR gates (circle the zeros) to implement the following logic:

Y = f(A,B,C,D)		CD			
		00	01	11	10
AB	00	1	0	0	0
	01	1	1	0	1
	11	x	х	х	х
	10	1	1	Х	Х


DTL Logic (over)

DTL Logic

7) Determine the voltages for the following DTL AND gate

8) Determine the voltages for the following DTL AND gate

