ECE 320-Quiz \#1 - Name

ECE 206 Review. January 19, 2017

1) Give N current loop equations to allow you to solve for the N unknown currents in this circuit

$I_{x}=I_{1}$
$V_{y}=R_{3}\left(I_{2}-I_{3}\right)$
$I_{1}-I_{3}=2$
$I_{4}=-20 I_{x}$
$R_{2} I_{2}+5 V_{y}+R_{3}\left(I_{2}-I_{3}\right)=0$
$R_{2} I_{2}+R_{1} I_{1}+\left(I_{3}-I_{4}\right) R_{4}=0$

2) Give N voltage node equations to allow you to solve for the N unknown voltages in this circuit

$$
\begin{array}{|l|}
\hline I_{x}=\left(\frac{V_{1}-V_{3}}{R_{1}}\right) \\
\hline V_{y}=V_{2} \\
\hline V_{1}-V_{2}=5 V_{y} \\
\hline 2+\left(\frac{V_{3}}{R_{4}}\right)+\left(\frac{V_{3}-V_{1}}{R_{1}}\right)-20 I_{x}=0 \\
\left(\frac{V_{1}}{R_{2}}\right)+\left(\frac{V_{1}-V_{3}}{R_{1}}\right)+\left(\frac{V_{2}}{R_{3}}\right)-2=0 \\
\hline
\end{array}
$$

3) Find the resistance between A and B

$$
\mathrm{R}_{\mathrm{AB}}=173.3 \mathrm{Ohms}
$$

4) Find the voltage at Y

DC Analysis (blue)
AC Analysis (red)

$$
\begin{aligned}
& V_{\text {in }}=10 \\
& \omega=0 \\
& L \rightarrow j \omega L=0 \\
& y=\left(\frac{200}{200+100}\right) 10 \\
& y=6.667
\end{aligned}
$$

$$
V_{i n}=5 \sin (100 t) \rightarrow-j 5
$$

$$
\omega=100
$$

$$
L \rightarrow j \omega L=j 50
$$

$$
y=\left(\frac{200}{200+100+j 50}\right) \cdot(-j 5)
$$

$$
y=3.288 \angle-99^{0}
$$

$$
y(t)=3.288 \cos \left(100 t-99^{\circ}\right)
$$

Total Answer $=\mathrm{DC}+\mathrm{AC}$

$$
y(t)=6.667+3.288 \cos \left(100 t-99^{0}\right)
$$

5) Find the voltage at Y

DC Analysis (blue)
$V_{\text {in }}=10$
$\omega=0$
$L \rightarrow j \omega L=0$
$C \rightarrow \frac{1}{j \omega C}=\infty$
$200 \|_{\infty}=200$
$y=\left(\frac{200}{200+300}\right) 10$
$y=4$

AC Analysis (red)
$V_{i n}=20 \sin (40 t) \rightarrow-j 20$
$\omega=40$
$L \rightarrow j \omega L=j 80$
$C \rightarrow \frac{1}{j \omega C}=-j 100$
$200 \|-j 100=\left(\frac{1}{200}+\frac{1}{-j 100}\right)^{-1}=89.44 \angle-63^{0}$
$y=\left(\frac{\left(89.44 \angle-63^{0}\right)}{\left(89.44 \angle-63^{0}\right)+(300+j 80)}\right) \cdot(-j 20)$
$y=5.76 \angle-153^{0}$
$y(t)=5.76 \cos \left(40 t-153^{0}\right)$

Total Answer: DC + AC

$$
y(t)=4+5.76 \cos \left(40 t-153^{0}\right)
$$

BONUS! How much coal do you have to burn in a year to keep everyone's cell phone charged in the U.S?
Assume

- 300 million people in the U.S. (300 million cell phones)
- It takes 8 Watt-hours of electricity to charge each cell phone each day (3.3V, 2.4mAh)
- 1 pound of coal produces 1 kWh of electricity

$$
\begin{aligned}
& \text { Energy }=\left(8 \frac{\text { Watt-hours }}{\text { day }}\right)\left(365 \frac{\text { days }}{\text { year }}\right)(3,000,000 \text { people }) \\
& =876 \cdot 10^{9} \mathrm{Watt} \cdot \text { hours } \\
& =876 \cdot 10^{6} \mathrm{kWh} \\
& \approx 876 \cdot 10^{6} \text { pounds of coal }
\end{aligned}
$$

To put this in perspective, 876 million pounds of coal is

- 9 km x $9 \mathrm{~km} \times 10 \mathrm{~m}$ in size
- A train with 3,743 fully loaded coal-cars, which would be over 6 km long

That coal would produce

- 3.2 billion pounds of CO_{2}
- Which has a volume of 742 million m^{3}
- Which is the volume of a cube which is 905 m on a side

Just to keep our cell phones charged

