ECE 320-Quiz \#6. Name

H-Bridges, Buck Converters, Frequency Content, February 15, 2018

1) Determine the voltages and currents for the following H -bridge. Assume ideal silicon transistors with

- $\left|V_{b e}\right|=0.7 \mathrm{~V}$
- $\left|V_{\text {ce }(s a t)}\right|=0.2 \mathrm{~V}$
- $\beta=100$

$\mathrm{lb1}$	lc	$\mathrm{lb2}$	v 1	v 2
465 uA	31 mA	310 uA	0.2 V	0.82 V

2) Design an H-bridge to drive a 50 Ohm load at 10 V . Determine the resistors (Rb) and resulting currents and voltages

Rb	$\mathrm{lb1}$	lc	V 1	V 2
2425	4 mA	192 mA	0.2 V	9.8 V

3) Buck Converter. Determine the voltages at V1 and V2 (DC and AC) for the following Buck converter.

V 1		V 2	
$\mathrm{~V} 1(\mathrm{DC})$	$\mathrm{V} 1 \mathrm{pp}(\mathrm{AC})$	$\mathrm{V} 2(\mathrm{DC})$	$\mathrm{V} 2 \mathrm{pp}(\mathrm{AC})$
11.86 V	15.7 Vpp	$\mathbf{1 1 . 8 6 V}$	0.817 Vpp

$V_{1 D C}=0.8 \cdot(15 \mathrm{~V})+0.2 \cdot(-0.7 \mathrm{~V})$
$V_{1 D C}=11.86 \mathrm{~V}$
$-j 39.8 \mid 100=13.67-j 34.36$
$V_{2}=\left(\frac{(13.67-j 34.36)}{(13.67-j 34.36)+(j 3140)}\right) \cdot 15.7 V_{p p}$
$V_{2}=0.817 V_{p p}$
4) Design a Buck converter so that

- The DC votlage at V 2 is 7 V
- The AC voltage at V 2 is 3 Vpp if $\mathrm{C}=0$
- The AC voltage at V 2 is 1 Vpp if $\mathrm{C}>0$

Duty Cycle (a) $\mathrm{V1}(\mathrm{DC})=7 \mathrm{~V}$	L $\mathrm{V} 2(\mathrm{AC})=3 \mathrm{Vpp}$ when $\mathrm{C}=0$	C $\mathrm{V} 2(\mathrm{AC})=1 \mathrm{Vpp}$
$\mathbf{0 . 4 9}$	$\mathbf{8 3 . 3} \mathbf{~ m H}$	$\mathbf{4 . 7 8 u F}$

$$
\begin{array}{ll}
\alpha=\left(\frac{7.7 V}{15.7 V}\right)=0.49 & \\
\omega L=\left(\frac{15.7 V_{p p}}{3 V_{p p}}\right) \cdot 100 \Omega & \frac{1}{\omega C}=\frac{1 V_{p p}}{3 V_{p p}} \cdot 100 \Omega \\
\omega L=523 \Omega & \frac{1}{\omega C}=33.3 \Omega \\
L=83.3 m H & C=4.78 \mu F
\end{array}
$$

5) Find the DC and first harmonic for the Fourier transfirm for the following waveform which is periodic in 2π

$$
\begin{aligned}
& f(t)=f(t+2 \pi) \\
& f(t)=\left\{\begin{array}{cc}
10 V & 0<t<2 \\
0 V & 2<t<2 \pi
\end{array}\right. \\
& D C=\frac{1}{2 \pi} \int f(t) \cdot d t \\
& a_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \cdot \cos (t) \cdot d t \\
& b_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \cdot \sin (t) \cdot d t
\end{aligned}
$$

DC	a1	b1
3.183 V	1.447	2.254

$$
\begin{array}{lll}
D C=\frac{1}{2 \pi} \cdot \int_{0}^{2}(10) \cdot d t & a_{1}=\frac{1}{2 \pi} \int_{0}^{2} 10 \cdot \cos (t) \cdot d t & b_{1}=\frac{1}{2 \pi} \int_{0}^{2} 10 \cdot \sin (t) \cdot d t \\
D C=\frac{20}{2 \pi}=3.183 V & a_{1}=\frac{10}{2 \pi}(\sin (t))_{0}^{2} & b_{1}=\frac{10}{2 \pi}(-\cos (t))_{0}^{2} \\
& a_{1}=\frac{5}{\pi}(\sin (2)-\sin (0)) & b_{1}=\frac{5}{\pi}(1-\cos (2)) \\
& a_{1}=1.447 & b_{1}=2.254
\end{array}
$$

note: angles are in radians

