ECE 320 - Quiz #6. Name

H-Bridges, Buck Converters, Frequency Content, February 15, 2018

- 1) Determine the voltages and currents for the following H-bridge. Assume ideal silicon transistors with
 - $|V_{be}| = 0.7V$
 - $|V_{ce(sat)}| = 0.2V$
 - $\beta = 100$

lb1	lc	lb2	V1	V2
465uA	31mA	310uA	0.2V	0.82V

2) Design an H-bridge to drive a 50 Ohm load at 10V. Determine the resistors (Rb) and resulting currents and voltages

Rb	lb1	lc	V1	V2
2425	4mA	192mA	0.2V	9.8V

3) Buck Converter. Determine the voltages at V1 and V2 (DC and AC) for the following Buck converter.

V	1		V2
V1 (DC)	V1pp (AC)	V2 (DC)	V2pp (AC)
11.86V	15.7Vpp	11.86V	0.817Vpp

$$V_{1DC} = 0.8 \cdot (15V) + 0.2 \cdot (-0.7V)$$
$$V_{1DC} = 11.86V$$

$$-j39.8||100 = 13.67 - j34.36$$
$$V_2 = \left(\frac{(13.67 - j34.36)}{(13.67 - j34.36) + (j3140)}\right) \cdot 15.7V_{pp}$$
$$V_2 = 0.817V_{pp}$$

4) Design a Buck converter so that

- The DC votlage at V2 is 7V
- The AC voltage at V2 is 3Vpp if C = 0
- The AC voltage at V2 is 1Vpp if C > 0

Duty Cycle (a)	L	C
V1(DC) = 7V	V2(AC) = 3Vpp when C = 0	V2(AC) = 1Vpp
0.49	83.3 mH	4.78uF

$$\alpha = \left(\frac{7.7V}{15.7V}\right) = 0.49$$

$\omega L = \left(\frac{15.7V_{pp}}{3V_{pp}}\right) \cdot 100\Omega$	$\frac{1}{\omega C} = \frac{1V_{pp}}{3V_{pp}} \cdot 100\Omega$
$\omega L = 523\Omega$	$\frac{1}{\omega C} = 33.3\Omega$
L = 83.3mH	$C = 4.78 \mu F$

5) Find the DC and first harmonic for the Fourier transfirm for the following waveform which is periodic in 2π

$$f(t) = f(t + 2\pi)$$

$$f(t) = \begin{cases} 10V & 0 < t < 2 \\ 0V & 2 < t < 2\pi \end{cases}$$

$$DC = \frac{1}{2\pi} \int f(t) \cdot dt$$

$$a_1 = \frac{1}{2\pi} \int_0^{2\pi} f(t) \cdot \cos(t) \cdot dt$$

$$b_1 = \frac{1}{2\pi} \int_0^{2\pi} f(t) \cdot \sin(t) \cdot dt$$

$$\boxed{DC} \qquad a1 \qquad b1$$

$$\boxed{3.183V} \qquad 1.447 \qquad 2.254$$

$$DC = \frac{1}{2\pi} \cdot \int_{0}^{2} (10) \cdot dt \qquad a_{1} = \frac{1}{2\pi} \int_{0}^{2} 10 \cdot \cos(t) \cdot dt \qquad b_{1} = \frac{1}{2\pi} \int_{0}^{2} 10 \cdot \sin(t) \cdot dt$$
$$DC = \frac{20}{2\pi} = 3.183V \qquad a_{1} = \frac{10}{2\pi} (\sin(t))_{0}^{2} \qquad b_{1} = \frac{10}{2\pi} (-\cos(t))_{0}^{2}$$
$$a_{1} = \frac{5}{\pi} (\sin(2) - \sin(0)) \qquad b_{1} = \frac{5}{\pi} (1 - \cos(2))$$
$$a_{1} = 1.447 \qquad b_{1} = 2.254$$

note: angles are in radians