## ECE 320 - Homework \#6

H-Bridge, DC to DC Converters, DC to AC Converters. Due Wednesday, February 21st, 2018

## H-Bridges

1) Determine the voltages and currents for the follownig H-bridge. Assume 3904/3907 transistors:

- $\beta=100$
- $\mathrm{V}_{\text {ce(sat })}=0.2 \mathrm{~V}$
- $\mathrm{V}_{\text {be }}=0.7 \mathrm{~V}$

Transistors 1 and 4 are off.
Transistor 2:

$$
\begin{aligned}
& I_{b}=\left(\frac{12 V-0.7 V}{20 k}\right)=565 \mu A \\
& \beta I_{b}=56.5 \mathrm{~mA} \quad \text { ( this transisor allows up to } 56.5 \mathrm{~mA} \text { to flow ) }
\end{aligned}
$$

Transistor 3:

$$
\begin{aligned}
& I_{b}=\left(\frac{21 V-0.7 V}{30 k}\right)=376 \mu \mathrm{~A} \\
& \beta I_{b}=37.6 \mathrm{~mA} \quad \text { ( this transistor allows up to } 37.6 \mathrm{~mA} \text { to flow ) }
\end{aligned}
$$

60 Ohm Load: If both transistors are saturated, the 60 Ohm load limits the current to

$$
\max \left(I_{c}\right)=\left(\frac{12-0.2-0.2}{60}\right)=193 m A
$$

The actual current is the smallest of these three: 37.6 mA

2) Modify this circuit so that I $=200 \mathrm{~mA}$ (approx)

Actually, limit the current to 193 mA (the 60 Ohm load). This means both transistors have to be saturated:
Transistor 2:

$$
\begin{aligned}
& \beta I_{b}>193 m A \\
& I_{b}>1.93 m A
\end{aligned}
$$

Let $\mathrm{Ib}=4 \mathrm{~mA}$

$$
R_{b}=\left(\frac{12 V-0.7 V}{4 m A}\right)=2825 \Omega
$$

Transistor 3:

$$
\begin{aligned}
& \beta I_{b}>193 m A \\
& I_{b}>1.93 m A
\end{aligned}
$$

Let $\mathrm{Ib}=4 \mathrm{~mA}$

$$
R_{b}=\left(\frac{12 V-0.7 V}{4 m A}\right)=2825 \Omega
$$


3) Simulate your circuit for problem \#2 in PartSim. Check that the voltages and currents you compute are correct.


|  | Transistor 2 |  |  |  |  | Transistor 3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Vb | Vc | Ib | Ic | Vb | Vc | Ib | Ic |  |
| Calculated | 0.7 V | 0.2 V | 4 mA | 193 mA | 11.3 V | 11.8 V | 4 mA | 193 mA |  |
| Simulated | 0.875 V | 0.366 V | 3.86 mA | 189 mA | 11.1 V | 11.7 V | 3.85 mA | 189 mA |  |

4) Lab: A dual H-brigde is a L1110 (\$0.91 ea - shown right). Connect

- $\mathrm{Vcc}=+12 \mathrm{~V}$
- gnd $=0 \mathrm{~V}$
- A-1A and A-1B are the control inputs ( $0 \mathrm{~V} / 5 \mathrm{~V}$ ).
- MOTOR-A: DC motor

Measure the voltage across the motor for the following inputs:

| Forward |  | Stop |  | Reverse |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A-1A | A-1B | A-1A | A-1B | A-1A | A-1B |
| 0 V | 5 V | 0 V | 0 V | 5 V | 0 V |
| $\mathbf{+ 1 1 . 2 2 V}$ |  | $\mathbf{0 . 0 0 V}$ |  | $\mathbf{- 1 1 . 2 2 V}$ |  |

## DC to DC Converters (Buck converters)

5) Find the voltage (DC and AC) for V1 and V2


V1: DC

$$
\begin{aligned}
& V_{1}=0.7 \cdot 12 V+0.3 \cdot(-0.7 V) \\
& V_{1}=8.19 V
\end{aligned}
$$

V1: AC

$$
V_{1}=12.7 V_{p p}
$$

V2: DC
same as V1(DC): 8.19V
V2:AC
$-j 53 \| 100=21.9-j 41.4$
$V_{2}=\left(\frac{(21.9-j 41.4)}{(21.9-j 41.4)+(j 628)}\right) \cdot 12.7 V_{p p}$
$\left|V_{2}\right|=1.013 V_{p p}$
6) Modify this circuit so that

- The voltage at V2 is 8VDC
- With a ripple of 2 Vpp when $\mathrm{C}=0$, and
- With a ripple of 0.5 Vpp with $\mathrm{C}>0$.

DC Voltage $=8 \mathrm{~V}$

$$
\begin{aligned}
& \alpha \cdot 12 V+(1-\alpha) \cdot(-0.7 V)=8 V \\
& \alpha=\left(\frac{8.7}{12.7}\right)=0.685
\end{aligned}
$$

Ripple is 2 V with $\mathrm{C}=0$
The ripple drops by a factor of 6.35

$$
\left(\frac{12.7 V_{p p}}{2 V_{p p}}\right)=6.35
$$

wL should be 6.35 times larger than R

$$
\begin{aligned}
& \omega L=6.35 \cdot R \\
& L=\left(\frac{635}{6280}\right)=0.101 H
\end{aligned}
$$

C then reduces the ripply by another factor of 4 x

$$
\begin{aligned}
& \left(\frac{1}{\omega C}\right)=\frac{1}{4} \cdot 100 \Omega \\
& C=6.37 \mu F
\end{aligned}
$$


7) Check your analysis in PartSim (or similar program)

With $\mathrm{C}=6.37 \mathrm{uF}$


Zooming in: $\mathrm{C}=0$


C=0: $6.568 \mathrm{~V}<\mathrm{V} 2<9.206 \mathrm{~V} . \mathrm{DC}=7.887$ (approx), $\mathrm{AC}=2.638 \mathrm{Vpp}$
Zooming In: $\mathrm{C}=6.37 \mathrm{uF}$


## DC to AC Converters

8a) Determine the first two terms of the Fourier series for the following waveform

```
    y(t)}\approx\textrm{a}+\textrm{b}\cdot\operatorname{cos}(\omega\textrm{t}+\phi
>> t = [0:0.0001:1]';
>> y = 12*(t < 0.7) - 0.7*(t>=0.7);
>> DC = mean(y)
DC =
    8.1891
>> a1 = 2*mean(y .* sin(2*pi*t))
    5.2924
>> b1 = 2*mean(y .* cos(2*pi*t))
    -3.8428
>> yf = DC + a1*sin(2*pi*t) + b1*cos(2*pi*t);
>> plot(t,y,t,yf)
\[
y(t) \approx 8.1891+5.29 \sin (6280 t)-3.8428 \cos (6280 t)
\]
```



Sidelight: If you go out to the 5th harmonic:
$\gg$ a2 $=2^{*}$ mean $\left(y .{ }^{*} \sin \left(2^{*} 2^{*} \mathrm{pi}^{*} t\right)\right)$
3.6554
>> b2 = 2*mean(y .* $\cos \left(2^{*} 2^{*}\right.$ i $^{*}$ t $)$ )
1.1901
>> a3 = 2*mean(y .* sin(3*2*pi*t))
0.2566

```
>> b3 = 2*mean(y .* cos(3*2*pi*t))
```

0.7921

```
>> a4 = 2*mean(y .* sin(4*2*pi*t))
```

0.6995
>> b4 = 2*mean(y .* cos(4*2*pi*t))
-0.9603

```
>> a5 = 2*mean(y .* sin(5*2*pi*t))
```

1.6169

```
>> b5 = 2*mean(y .* cos(5*2*pi*t))
```

0.0024

```
>> yf = yf + a2*sin(2*2*pi*t) + b2*cos(2*2*pi*t);
```

$\gg y f=y f+a 3^{*} \sin \left(3^{*} 2^{*} \mathrm{pi}^{*} \mathrm{t}\right)+\mathrm{b} 3^{*} \cos \left(3^{*} 2^{*} \mathrm{pi}{ }^{*} \mathrm{t}\right)$;
$\gg y f=y f+a 4^{*} \sin \left(4^{*} 2^{*} \mathrm{pi}^{*} \mathrm{t}\right)+\mathrm{b} 4^{*} \cos \left(4^{*} 2^{*} \mathrm{pi}{ }^{*} \mathrm{t}\right)$;
$\gg y f=y f+a 5^{*} \sin \left(5^{*} 2^{*}\right.$ pi*t) + b5*cos(5*2*pi*t);
$\ggg>\operatorname{plot}([t ; t+1],[y ; y],[t ; t+1],[y f ; y f])$;
>>


It really does converge if you add more and more harmonics...

8b) How much of the total energy is contained in these two terms?

```
>> Total = mean(y.^2)
Total =
    100.9370
>> yf = DC + a1*sin(2*pi*t) + b1*cos(2*pi*t);
>>
>> H01 = mean(yf .^ 2)
H01 =
    88.4429
>> H01 / Total
ans =
    0.8762
>>
```


## $87.62 \%$ of the total energy is in the DC term and the 1st harmonic.

After filtering the signal with L and C , this goes up significantly.

| Harmonic | w <br> $(\mathrm{rad} / \mathrm{sec})$ | $\mid$ V1 <br> Volts (peak) | $\left.\begin{array}{c}\mid \text { gain } \mid \\ \left(\frac{1}{j \omega C} \\| R\right) \\ \left(\frac{1}{j \omega C} \\| R\right)+(j \omega L)\end{array}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $0(\mathrm{DC})$ | 0 | 8.1891 | 1.000 | 8.1981 |
| 1 | 6,280 | 7.071 | 0.0799 | 0.565 |
| 2 | 12,560 | 3.844 | 0.0208 | 0.080 |
| 3 | 18,840 | 0.833 | 0.0093 | 0.008 |
| 4 | 25,120 | 1.188 | 0.0053 | 0.006 |
| 5 | 31,400 | 1.617 | 0.0034 | 0.005 |

