ECE 320 - Homework \#7

SCR, Op-Amp Amplifiers. Due Monday, February 26th, 2018

SCR

1) Assume a firing angle of 50 degrees. Determine the voltages (DC and AC) at V1 and V2.

DC:

$$
\begin{aligned}
& V_{1} \approx \frac{1}{\pi}\left(\int_{0}^{0.8272}(-0.7) \cdot d t+\int_{0.8272}^{\pi} 169.7 \sin (t) \cdot d t\right) \\
& V_{1} \approx \frac{1}{\pi}\left(-0.579+169.7(-\cos (t))_{0.8272}^{\pi}\right) \\
& V_{1} \approx-0.1843+54.01\left(1+\cos \left(50^{0}\right)\right) \\
& V_{1} \approx 88.55 V
\end{aligned}
$$

note: The voltage is large enough that the 0.7 V drop from the diode for 50 degrees doesn't have much effect on the output. You could also use

$$
\begin{aligned}
& V_{1} \approx\left(\frac{1+\cos \theta}{\pi}\right) V_{p} \\
& V_{1} \approx 88.74 \mathrm{~V}
\end{aligned}
$$

AC:

$$
\begin{aligned}
& \max \left(V_{1}\right)=169.7-1.4=168.3 V \\
& \min \left(V_{1}\right)=-0.7 V \\
& V_{1 p p}=169 V_{p p}
\end{aligned}
$$

AtV2:

$$
\begin{aligned}
& \omega=120 \mathrm{~Hz}=754 \frac{\mathrm{rad}}{\mathrm{sec}} \\
& L \rightarrow j \omega L=j 75.4 \Omega \\
& C \rightarrow \frac{1}{j \omega \mathrm{C}}=-j 0.66 \Omega
\end{aligned}
$$

R in parallel with C is

$$
\left(\frac{1}{5}+\frac{1}{-j 0.66}\right)^{-1}=0.0864-j 0.6571 \Omega
$$

By voltage division

$$
\begin{aligned}
& V_{2 p p}=\left(\frac{(0.0864-j 0.6571)}{(0.0864-j 0.6571)+j 75.4}\right) V_{1 p p} \\
& V_{2 p p}=1.486 \angle-172^{0}
\end{aligned}
$$

All we care about is the amplitude

$$
V_{2}=1.486 V_{p p}
$$

2) (Not Assigned). Use a transistor as a switch to turn on and off a full-wave rectified sine wave.

- NPN transistors act as switches to ground $(+\mathrm{Vcc}=\mathrm{on}, 0 \mathrm{~V}=$ off $)$
- PNP transistors act as switches to power: ($+\mathrm{Vcc}=$ off, $0 \mathrm{~V}=$ on)

For a resistive load, this results in ...

Looks good: Adding in C and L

V2(DC) = 83V (approx)

$$
\mathrm{V} 2(\mathrm{AC})=1.22 \mathrm{Vpp} \text { (approx) }
$$

3) Determine the firing angle, C, and L so that

The DC voltage at the load is 50 V

$$
\begin{aligned}
& V_{1} \approx\left(\frac{1+\cos \theta}{\pi}\right) V_{p} \\
& 50 \approx\left(\frac{1+\cos \theta}{\pi}\right) 169 \\
& \theta=94.04^{0}
\end{aligned}
$$

The ripple at the load is 1 Vpp

$$
\begin{aligned}
& \max \left(V_{1}\right)=169.7 \cdot \sin \left(94.04^{0}\right)-1.4 V \\
& \max \left(V_{1}\right)=167.9 \mathrm{~V} \\
& \min \left(V_{1}\right)=-0.7 \mathrm{~V} \\
& V_{1 p p}=168.6 V_{p p}
\end{aligned}
$$

Pick L to make the ripple 20x smaller (somewhat arbitrary)

$$
\begin{aligned}
& |j \omega L|=20 R \\
& \omega L=100 \\
& L=\frac{100}{754}=132.6 \mathrm{mH}
\end{aligned}
$$

This should result in a ripple at V2 that is 20x smaller

$$
V_{2}=\frac{168.6}{20}=8.42 V_{p p}
$$

To bring the ripple down to 1 Vpp , add a capacitor which is 8.42 times smaller than R

$$
\begin{aligned}
& \frac{1}{\omega C}=\frac{1}{8.42} \cdot 5 \Omega \\
& \frac{1}{\omega C}=0.5932 \\
& C=2235 \mu F
\end{aligned}
$$

4) For the following op-amp circuit with a gain of 'only' 2000 :

a) Write the voltage node equations

$$
\begin{aligned}
& \left(\frac{V_{p}-2}{1 k}\right)+\left(\frac{V_{p}}{2 M}\right)=0 \\
& \left(\frac{V_{m}}{2 M}\right)+\left(\frac{V_{m}}{1 k}\right)+\left(\frac{V_{m}-Y}{2 k}\right)=0 \\
& \left(\frac{Y-V_{3}}{75}\right)+\left(\frac{Y-V_{m}}{2 k}\right)+\left(\frac{Y}{1 k}\right)=0 \\
& V_{3}=2000\left(V_{p}-V_{m}\right)
\end{aligned}
$$

b) Solve for the voltages at Vp, Vm, and Y

Multiply each equation by 1000 and separate terms

$$
\begin{aligned}
& 1.0005 V_{p}=2 \\
& 1.5005 V_{m}-0.5 Y=0
\end{aligned}
$$

$$
14.8333 Y-13.333 V_{3}-0.5 V_{m}=0
$$

$$
V_{3}-2000 V_{p}+2000 V_{m}=0
$$

Place in matrix form

$$
\left[\begin{array}{cccc}
1.005 & 0 & 0 & 0 \\
0 & 1.5005 & 0 & -0.5 \\
0 & -0.5 & -13.333 & 14.8333 \\
-2000 & 2000 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
V_{p} \\
V_{m} \\
V_{3} \\
Y
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right]
$$

Solve

$$
\begin{aligned}
& -->A=[1.005,0,0,0 ; 0,1.5005,0,-0.5 ; 0,-0.5,-13.3333,14.83333 ;-2000,2000,1,0] \\
& \mathrm{A}= \\
& \\
& \\
& \begin{array}{llll}
1.005 & 0 . & 0 . & 0 .
\end{array} \\
& 0 .
\end{aligned}
$$

```
        0. - 0.5 - 13.3333 14.83333
    - 2000. 2000. 1. 0.
-->B = [2;0;0;0]
    B =
    2.
0.
0.
0.
\(-->V=\operatorname{inv}(A) * B\) V =
1.9900498 Vp
1.9867705 Vm
6.5585677 V3
5.9622982 Y
```

5) For the following op-amp circuit

- a) Write the voltage node equations
- b) Solve for the voltages at Vp, Vm, and Y

Assume an ideal op-amp.

$$
\begin{aligned}
& V_{p}=2 V \\
& V_{p}=V_{m} \\
& \left(\frac{V_{m}}{1 k}\right)+\left(\frac{V_{m}-Y}{2 k}\right)=0
\end{aligned}
$$

Solving

$$
Y=\left(1+\frac{2 k}{1 k}\right) 2 V
$$

$$
Y=6 V
$$

The previous answer was 5.9622 V . About the same
6) Assume ideal op-amps. Write the voltage node equations for the following circuit

The impedance of a capacitor is $\frac{1}{C s}$

$$
V_{3}=V_{2}
$$

$$
\left(\frac{V_{1}-V_{0}}{R}\right)+\left(\frac{V_{1}-V_{2}}{R}\right)+\left(\frac{V_{1}-V_{4}}{1 / C s}\right)=0
$$

$$
\left(\frac{V_{2}-V_{1}}{R}\right)+\left(\frac{V_{2}}{1 / C s}\right)=0
$$

$$
\left(\frac{V_{3}}{R_{b}}\right)+\left(\frac{V_{3}-V_{4}}{R_{a}}\right)=0
$$

