ECE 320 - Homework \#8

Schmitt Triggers, Boolean Logic, DTL Logic. Due Monday, March 5th, 2018

Assume

- MCP602 op-amps which operate at $0 \mathrm{~V} / 5 \mathrm{~V}$ and are capable of driving up to 30 mA .
- 3904 NPN transistors which are capable of driving up to 200 mA and have a current gain of 100 .
- A temperature sensor has the relationship

$$
R=1000 \cdot \exp \left(\frac{3905}{T}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees Kelvin (0 Celsius $=273$ Kelvin).

- A DC motor which draws 200 mA at 10 V .

1) Design a comparitor circuit which outputs

- 0 V when when the temperature is below 30 C
- 5 V when the temperature is above 30 C

At 30C (303K)

$$
\mathrm{R}=805 \text { Ohms }
$$

Use a voltage divider with a 1 k resistor. This results in the voltage being

$$
\begin{aligned}
& V_{a}=\left(\frac{R}{R+1000}\right) \cdot 5 V \\
& V_{a}=2.23 V
\end{aligned}
$$

Build a comparitor which switches at 2.23 V (30C).
When the temperature gets really high (100C)

- R goes to zero
- Va goes to zero
- Vo goes to 5V

Connect to the - input.

2) Modify this circui tso that it can drive a DC motor which draws 200 mA at 10 V when turned on. Add a transistor to act as a switch. Use a 3904 NPN transistor

$$
I_{c}=200 m A
$$

To saturate the transistor:

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& I_{b}>2 m A \quad(\text { beta }=100 \text { for a } 3904)
\end{aligned}
$$

Let

$$
\begin{aligned}
& I_{b}=4 m A \\
& R_{b}=\left(\frac{5 V-0.7 V}{4 m A}\right)=1075 \Omega
\end{aligned}
$$

3) Build this circuit in lab and verify your design. (note: use a decade resistor in place of the temperature sensor when verifying what temperature / resistance the motor turns on).
4) Design a Schmitt Trigger which outputs

- 0 V when the temperature drops below 30C,
- 5 V when the temperature goes above 35 C , and
- No change for $30 \mathrm{C}<\mathrm{T}<35 \mathrm{C}$

Assume a 1 k resistor for a voltage divider (same as problem \#1)
At 30C

$$
\begin{aligned}
& \mathrm{R}=805 \mathrm{Ohms} \\
& \mathrm{Va}=2.23 \mathrm{~V}
\end{aligned}
$$

At 35C

$$
\begin{aligned}
& \mathrm{R}=653 \mathrm{Ohms} \\
& \mathrm{Va}=1.9761 \mathrm{~V}
\end{aligned}
$$

The gain you need is

$$
\text { gain }=\left(\frac{5 V-0 V}{2.23 V-1.97 V}\right)=19.63
$$

When temperature goes up

- R goes to zero
- Va goes to zero
- Vo goes to 5V

Connect to the - input

When the ouput is 0 V , you switch at $35 \mathrm{C}(1.97 \mathrm{~V})$. Connect the - input to 1.97 V

Boolean Logic

5) Design a circuit using NAND gates (circle the ones) to implement the following logic:

	CD			
	00	01	11	10
00	1	0	0	0
01	1	1	0	1
AB 11		x	x	\times
10	1	1	x	x

$$
Y=\bar{C} \bar{D}+B \bar{C}+B \bar{D}
$$

6) Design a circuit using NOR gates (circle the zeros) to implement the following logic:

	CD			
	00	01	11	10
00	1	0	0	0
01	1	1	0	1
AB_{11}	x	x	x	x
10	1	1	\sqrt{x}	x

$$
\bar{Y}=C D+\bar{B} C+\bar{A} \bar{B} D
$$

Using DeMorgan's theorem

$$
\begin{aligned}
& Y=\overline{C D+\bar{B} C+\bar{A} \bar{B} D} \\
& Y=(\bar{C}+\bar{D})(B+\bar{C})(A+B+\bar{D})
\end{aligned}
$$

DTL Logic

7) Determine the voltages for the following DTL AND gate

8) Determine the voltages for the following DTL AND gate

