ECE 320 - Homework \#3

Ideal Diodes, LEDs, AC to DC Converters. Due Monday, January 28th, 2019

Ideal Diodes

1) Assume an ideal silicon diode $(\mathrm{Vf}=0.7 \mathrm{~V})$. Determine the voltages and currents

Assume the diode is on

$$
V_{1}=0.7 V
$$

The currents are then

$$
\begin{aligned}
& I_{100}=\left(\frac{10 V-0.7 V}{100 \Omega}\right)=93 m A \\
& I_{200}=\left(\frac{0.7 V}{200 \Omega}\right)=3.5 m A
\end{aligned}
$$

The current through the diode is then

$$
\begin{aligned}
& I_{d}=I_{100}-I_{200} \\
& I_{d}=89.5 m A
\end{aligned}
$$

2) Assume an ideal silicon diode $(\mathrm{Vf}=0.7 \mathrm{~V})$. Determine the voltages and currents

$$
\begin{aligned}
& V_{2}=V_{1}-0.7 \\
& V_{3}=V_{1}-1.4 \\
& \left(\frac{V_{1}-10}{100}\right)+\left(\frac{V_{1}-1.4}{200}\right)+\left(\frac{V_{1}}{470}\right)=0 \quad \text { Super Node }
\end{aligned}
$$

Solving

$$
\begin{aligned}
& V_{1}=6.2472 V \\
& V_{2}=5.5472 V \\
& V_{3}=4.8472 V
\end{aligned}
$$

The resulting currents are shown in the above figure. Note that the currents through the diodes which are "on" are positive.

LED's

The specifications for a Piranah RGB LED are

Color	Vf @ 20mA	mcd @ 20mA
red	2.0 V	10,000
green	3.2 V	10,000
blue	3.2 V	10,000

3) Design a circuit to drive these LEDs with a 10 V source to produce lavender:

- Red $=9647 \mathrm{mcd}(246 / 255)$
- Green $=8117$ mcd $\quad(207 / 255)$
- Blue $=9882 \mathrm{mcd}(252 / 255)$

Assums a 10V DC source
Red LED

$$
\begin{aligned}
& I_{r}=\left(\frac{9647 m c d}{10,000 \mathrm{mcd}}\right) 20 m A=19.29 m A \\
& R_{r}=\left(\frac{10 \mathrm{~V}-2.0 \mathrm{~V}}{19.29 \mathrm{~mA}}\right)=415 \Omega
\end{aligned}
$$

Green LED

$$
\begin{aligned}
& I_{g}=\left(\frac{8117 m c d}{10,000 m c d}\right) 20 m A=16.23 m A \\
& R_{g}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{16.23 m A}\right)=419 \Omega
\end{aligned}
$$

Blue LED

$$
\begin{aligned}
& I_{b}=\left(\frac{9882 m c d}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=19.76 \mathrm{~mA} \\
& R_{b}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{19.76 \mathrm{~mA}}\right)=344 \Omega
\end{aligned}
$$

4) Design a circuit to drive these LEDs with a 10 V source producing steel blue:

- $\operatorname{Red}=4745 \operatorname{mcd}(121 / 255)$
- Green $=6078 \mathrm{mcd}(155 / 255)$
- Blue $=8235 \operatorname{mcd}(210 / 255)$

Red LED

$$
\begin{aligned}
& I_{r}=\left(\frac{4745 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=9.49 \mathrm{~mA} \\
& R_{r}=\left(\frac{10 \mathrm{~V}-2.0 \mathrm{~V}}{9.49 \mathrm{~mA}}\right)=843 \Omega
\end{aligned}
$$

Green LED

$$
\begin{aligned}
& I_{g}=\left(\frac{6078 m c d}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=12.15 \mathrm{~mA} \\
& R_{g}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{12.15 \mathrm{~mA}}\right)=559 \Omega
\end{aligned}
$$

Blue LED

$$
\begin{aligned}
& I_{b}=\left(\frac{8235 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=16.47 \mathrm{~mA} \\
& R_{b}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{16.47 \mathrm{~mA}}\right)=413 \Omega
\end{aligned}
$$

AC to DC Converters

5) Determine the voltage (DC and AC) at V 1 and V 2

The peak voltage at V 1 is 19.3 V (20.0 V minus the 0.7 V drop across the diode). Assume there is no ripple (worst case). The current is then

$$
I=\left(\frac{19.3 V}{1278 \Omega}\right)=15.1 m A
$$

The ripple at V 1 is then

$$
\begin{aligned}
& I=C \frac{d V}{d t} \\
& 15.1 \mathrm{~mA}=100 \mu F \cdot \frac{d V}{1 / 60 \mathrm{~s}} \\
& d V=2.517 V_{p p}
\end{aligned}
$$

The DC voltage at V 1 is then (approximately)

$$
\begin{aligned}
& V_{1}=V_{1 \max }-\frac{1}{2} V_{1 p p} \\
& V_{1}=19.3-\frac{1}{2} \cdot 2.517 V_{p p} \\
& V_{1}=18.04 \mathrm{~V}
\end{aligned}
$$

The AC votlage at V 1 is

$$
V_{1 p p}=2.517 V_{p p}
$$

The DC voltage at V 2 is

$$
\begin{aligned}
& V_{2}=\left(\frac{1000}{1000+278}\right) 18.04 \mathrm{~V} \\
& V_{2}=14.117 \mathrm{~V}
\end{aligned}
$$

The AC voltage at V2 is...
The AC impedance of the capacitor is

$$
Z_{c}=\frac{1}{j \omega C}=\frac{1}{j \cdot 377 \cdot 10 u F}=-j 265 \Omega
$$

The AC impedance of the inductor is

$$
Z_{L}=j \omega L=j 3770 \Omega
$$

1000 Ohms in parallel with -j 265 Ohms is

$$
\left(\frac{1}{1000}+\frac{1}{-j 265}\right)^{-1}=65.73-j 247.8
$$

By voltage division

$$
\begin{aligned}
& V_{2 p p}=\left(\frac{(65.73-\mathrm{j} 247.8)}{(65.73-\mathrm{j} 247.8)+(278+j 3770)}\right) V_{1 p p} \\
& V_{2 p p}=\left(\frac{(65.73-\mathrm{j} 247.8)}{(65.73-\mathrm{j} 247.8)+(278+j 3770)}\right) \cdot 2.517 V_{p p} \\
& V_{2 p p}=0.1824 V_{p p}
\end{aligned}
$$

Net Result

	V 1	V 2
DC	18.04 V	14.12 V
AC	2.517 Vpp	0.1824 Vpp

Note: The values are a little off since the current was assumed to be 15.1 mA (from assuming V1 is 19.3 V) This is a little high, so the actual numbers should be slightly less.
6) Simulate this circuit in PartSim and check the voltages at V1 and V2 (DC and AC)

Voltage V1

Voltage V2
Comparing the simulation and calculations

	Calculated		Simulated		Measured	
	DC	AC	DC	AC	DC	AC
V1	18.04 V	2.517 Vpp	18.22 V	2.16 Vpp		
V2	14.12 V	0.1824 Vpp	14.26 V	0.143 Vpp		

7) Lab: Build this circuit in lab and check the voltages at V1 and V2 (DC and AC)
8) Modify this circuit (change the capacitors) so that

- The AC voltage at V 1 is 2 Vpp
- The AC voltage at V 2 is 0.2 Vpp

Start with V1

DC: $\quad \max (\mathrm{V} 1)=19.3 \mathrm{~V}$

$$
\mathrm{V} 1(\mathrm{DC})=18.3
$$

$$
I=\left(\frac{18.3 V}{1278 \Omega}\right)=14.3 m A
$$

$$
I=C \frac{d V}{d t}
$$

$$
14.3 m A=C \cdot \frac{2 V_{p p}}{1 / 60 s}
$$

$$
C=119.3 \mu F
$$

V2: If you let $\mathrm{C}=0$, the ripple at V 2 will be

$$
\begin{aligned}
& V_{2}=\left(\frac{1000}{1000+278+j 3780}\right) \cdot 2 V_{p p} \\
& V_{2}=501 m V_{p p}
\end{aligned}
$$

This is 5.01 times too large. So, let

$$
\begin{aligned}
& Z_{c}=\frac{1}{5.01} \cdot 1000 \Omega=199.5 \Omega \\
& \frac{1}{\omega C}=199.5 \Omega \\
& C=13.29 \mu F
\end{aligned}
$$

Checking in PartSim

Voltage V2

	Calculated		Simulated	
	DC	AC	DC	AC
V1	18.3 V	2 Vpp	18.22 V	1.82 Vpp
V2	14.32 V	100 mVpp	14.40 V	80 mVpp

