ECE 320 - Solution \#5

Transistors, Transistos Used as a Switch. Due Monday, Feb 11th, 2019

Transistors

1) For the following transistor circuit and VI characteristics for the transistor, determine

- The current gain, $\beta \quad \beta=25$
- The load line
- The operating point for Vin $=\{0 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}, 15 \mathrm{~V}\}$

Vin	0 V	5 V	10 V	15 V
lb	0 mA	4.3 mA	9.3 mA	14.3 mA
beta * lb	0 mA	107 mA	232.5 mA	357.5 mA
Ic	0 mA	107 mA	232.5 mA	236 mA
Vce	12 V	6.65 V	0.375 V	0.2 V
	off	active	active	saturated

Problem 2-3: Assume a TIP112 transistor (NPN) and TIP117 (PNP) (\$0.34 each)

- $\beta=1000$
- $\min \left(\left|V_{c e}\right|\right)=0.9 \mathrm{~V}$
- $\max \left(I_{c}\right)=4 A$
- $V_{b e}=1.4 \mathrm{~V}$

2) Design a circuit to meet the following requirements (i.e. a transistor used as a switch)

- Input: $0 \mathrm{~V} / 5 \mathrm{~V}$ binary signal capable of 20 mA
- Output: DC Motor which draws $200 \mathrm{~mA} @ 10 \mathrm{~V}$
- Relationship:
- When Vin $=0 \mathrm{~V}, 0 \mathrm{~V}$ is applied to the motor
- When Vin $=5 \mathrm{~V}, 10 \mathrm{~V}$ is applied to the motor $+/-1 \mathrm{~V}$

What matters is the current. When the motor is on, it draws 200 mA . Design a circuit to turn on and off 200 mA
On the collector side, you don't have to do anything: just connect the motor to power and ground (with a transistor in series to act as a switch)

On the base side, the base current you need to saturate the transistor is

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& 1000 I_{b}>200 \mathrm{~mA} \\
& I_{b}>200 \mu \mathrm{~A}
\end{aligned}
$$

Pick someting larger than 200 uA but less than 20 mA (the most the function generators can output). Let

$$
I_{b}=1 \mathrm{~mA}
$$

Then

$$
R_{b}=\left(\frac{5 V-1.4 V}{1 m A}\right)=3.6 \mathrm{k} \Omega
$$

3) Check your design in PartSim
4) Check your design in lab.

- Model th emotor as a 50 Ohm resistor (200 mA @ 10 V)
- When Vin $=0 \mathrm{~V}$, is 0 A flowing ni the motor?
- When Vin $=5 \mathrm{~V}$, is 200 mA flowing through the motor (i.e. the 20 Ohm resistor)?

Motor On: Vin $=5 \mathrm{~V}$, Imotor $=186 \mathrm{~mA}$

Vin = 5V (on)	Calculated porblem 2	Simulated problem 3	measured problem 4
Vin	5.0 V	5.00 V	5.00 V
Vbe	1.4 V	1.36 V	1.404 V
Vce	0.9 V	0.697 V	0.87 V
Ic	182 mA	186 mA	0.2 A

Motor Off: Vin $=0 \mathrm{~V}$, Imotor $=0 \mathrm{~mA}$

Vin = 0V (off)	Calculated porblem 2	Simulated problem 3	Measured problem 4
Vin	0.0 V	0 V	0 V
Vbe	0 V	36.2 nV	0 V
Vce	10 V	10.00 V	10.0 V
Ic	0 mA	328 pA	0 A

