ECE 320 - Homework \#6

H Bridge, DC to DC Converters, Fourier Transform. Due Wednesday, February 20, 2019

H-Bridge

Assume a TIP112 and TIP117 transistor for the following H-bridge (Darlington pairs)

- $\beta=1000$
- $V_{b e}=1.4 \mathrm{~V}$
- $\min \left(\left|V_{c e}\right|\right)=0.9 V$

1) Determine the voltages V 1 and V 2 for the following H -bridge

Assuming both transistors are satuated...

$$
I_{3}=\left(\frac{12-0.9-0.9}{25}\right)=408 m A
$$

The actual current, I3, is the smallest of these

$$
I_{3}=\min (1.6 A, 408 m A, 265 m A)=265 m A
$$

meaning that transistor 1 is saturated, transistor 2 is active

$$
\begin{aligned}
& V_{4}=12-0.9 \mathrm{~V}=11.1 \mathrm{~V} \\
& V_{3}=V_{2}-25 \Omega \cdot 265 \mathrm{~mA}=4.475 \mathrm{~V}
\end{aligned}
$$

2) Modify this circuit to meet the following requirements

- Input: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} .0 / 12 \mathrm{~V}$ binary signals, capable of 20 mA
- Output: 50 Ohm resistor
- Relationship: By varying A,B,C,D, the voltage across the 50 Ohm resistor can be set to $+12 \mathrm{~V},-12 \mathrm{~V}$, and $0 \mathrm{~V}(+/-$ 1V)

The current you're trying to drive through a 50 Ohm resistor is

$$
I_{3}=\left(\frac{12 V-0.9 V-0.9 V}{50 \Omega}\right)=204 m A
$$

To saturate each transistor, you need

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& I_{b}>\frac{204 m A}{1000}=204 \mu A
\end{aligned}
$$

Let $\mathrm{Ib}=1 \mathrm{~mA}$. Then

$$
R_{b}=\left(\frac{12 V-1.4 V}{1 m A}\right)=10.6 k
$$

Let $\mathrm{Rb}=10 \mathrm{k}$

DC to DC Converters (Buck converter)

3) For the following Buck converter, determine the votlages at V1 and V2 (DC and AC)

DC:

$$
\begin{aligned}
& V_{1}=0.4 \cdot 20 \mathrm{~V}+0.6 \cdot(-0.7 \mathrm{~V})=7.58 \mathrm{~V} \\
& V_{2}=\left(\frac{100}{100+10}\right) V_{1}=6.89 \mathrm{~V}
\end{aligned}
$$

AC

$$
\begin{aligned}
& V_{1}=20.7 V_{p p} \\
& V_{2}=\left(\frac{9.21-j 28.91}{(9.21-j 28.91)+(10+j 68.20)}\right) \cdot 20.7 V_{p p} \\
& V_{2}=16.12 V_{p p}
\end{aligned}
$$

4) Simulated your design for problem \#3 in PartSim (or similar program) to verify the DC and AC voltages at V2

V1				
	DC	AC	DC	AC
Calculated	7.58 V	20.7 Vpp	6.89 V	14.36 Vpp
				10.96 Vpp
	$?$	20.67 Vpp	11.67 V	

5) Modify this circuit so that the votlage at V 2 is

- 5 V (DC)
- $250 \mathrm{mV} \mathrm{pp}(\mathrm{AC})$

DC:

$$
\begin{aligned}
& V_{2}=5 V \\
& V_{1}=\left(\frac{100+10}{100}\right) V_{2}=5.50 V \\
& 5.50 V=\alpha \cdot 20 V+(1-\alpha) \\
& \alpha=\left(\frac{5.50+0.7}{20+0.7}\right)=0.2995
\end{aligned}
$$

Duty Cycle $=\mathbf{2 9 . 9 5 \%}$

AC:
Pick L to reduce the ripple by 10 x (ripple becomes 2.07 Vpp)

$$
\begin{aligned}
& |j \omega L|=10 \cdot R_{\text {load }}=1000 \Omega \\
& L=159 \mathrm{mH}
\end{aligned}
$$

Pick C to reduce the ripple down to 250 mV pp

$$
\begin{aligned}
& \left|\frac{1}{j \omega C}\right|=\left(\frac{250 m V_{p p}}{2.07 V_{p p}}\right) \cdot 100 \Omega=12.08 \Omega \\
& C=13.18 \mu F
\end{aligned}
$$

Checking in PartSim (not required)

V1				
	DC	AC	DC	AC
Calculated	5.50 V	20.7 Vpp	5.00 V	250 mVpp
		20.67 Vpp	4.95 V	246 mVpp

Fourier Transform:

6) Find the Fourier transform for V1 (problem \#3) out to the 5th harmonic. (a 40% duty cycle square wave at 1 kHz)

$$
V_{1}(t)=\left\{\begin{array}{cc}
20 \mathrm{~V} & 0<t<400 \mu \mathrm{~s} \\
-0.7 \mathrm{~V} & 400 \mu \mathrm{~s}<t<1 \mathrm{~ms}
\end{array}\right.
$$

In Matlab (actually SciLab)

```
t = [0:0.0001:1]';
x = 20*(t < 0.4) - 0.7*(t >= 0.4);
t = t * 2*pi;
c0 = mean(x);
c1 = 2*mean(x .* exp(-j*t) );
c2 = 2*mean(x .* exp(-j*2*t) );
c3 = 2*mean(x .* exp(-j*3*t) );
c4 = 2*mean(x .* exp (-j*4*t) );
c5 = 2*mean(x .* exp(-j*5*t) );
[c0;c1;c2;c3;c4;c5]
N C(N)
0 7.5791721
1 3.8761426 -11.917231i
-3.1316587 -2.2781891i
2.0899225-1.5155117i
-0.9645298 -2.9808269i
5 -0.0001400 -3.540D-16i
```

This means

$$
\begin{aligned}
x(t)= & 7.579+3.876 \cos (6280 t)+11.917 \sin (6280 t) \\
& -3.131 \cos (2 \cdot 6280 t)+2.278 \sin (2 \cdot 6280 t) \\
& +2.089 \cos (3 \cdot 6280 t)+1.155 \sin (3 \cdot 6280 t) \\
& -0.964 \cos (4 \cdot 6280 t)+2.980 \sin (4 \cdot 6280 t) \\
& +0.000 \cos (5 \cdot 6280 t)+0.000 \sin (5 \cdot 6280 t)
\end{aligned}
$$

Plotting this in MatLab

```
xf = c0;
xf = xf + real(c1)*cos(t) - imag(c1)*sin(t);
xf = xf + real(c2)*cos(2*t) - imag(c2)*sin(2*t);
xf = xf + real(c3)*cos(3*t) - imag(c3)*sin(3*t);
xf = xf + real(c4)*cos(4*t) - imag(c4)*sin(4*t);
xf = xf + real(c5)*cos(5*t) - imag(c5)*sin(5*t);
t0 = t/(2*pi);
plot(t0,x,t0,yf);
xlabel('Time (ms)');
ylabel('Volts');
```


$x(t)$ (blue) and its Fourier approximation taken out to the 5th harmonic (red)
7) Using the results from problem \#6, find V2(t) in terms of its Fourier Trasnform out to the 5th harmonic.

Sample Calculations:
$n=3$

$$
\begin{aligned}
& \omega=n \cdot 6280=18,840 \frac{\mathrm{rad}}{\mathrm{sec}} \\
& V_{1}=2.0899-\mathrm{j} 1.5155 \\
& L \rightarrow j \omega L=j 188.4 \Omega \\
& C \rightarrow \frac{1}{j \omega C}=-j 10.61 \Omega
\end{aligned}
$$

$$
100 \Omega \|-j 10.61 \Omega=1.114-j 10.497 \Omega
$$

$$
V_{2}=\left(\frac{(1.114-j 10.497 \Omega)}{(1.114-j 10.497 \Omega)+(10+j 188.4)}\right) \cdot(2.0899-j 1.5155)
$$

$$
V_{2}=0.1370+j 0.0678
$$

Repeating for all five terms

n	V 1	gain	V 2
0	7.58	0.9090909	6.8901564
1	$3.876-j 11.917$	$-0.5292-\mathrm{j} 0.5715$	$4.762-\mathrm{j} 8.523$
2	$-3.131-j 2.278$	$-0.137-j 0.038$	$0.342+\mathrm{j} 0.430$
3	$2.089-j 1.515$	$-0.058-j 0.010$	$-0.137+j 0.068$
4	$-0.964-j 2.980$	$-0.032-j 0.004$	$0.019+j 0.100$
5	$0.000-j 0.000$	$-0.021-j 0.002$	0

Plotting V2(t) in Matlab

$\mathrm{R}=100$;
$C=5 e-6$;
$\mathrm{L}=0.01$;
R1 = 10;
$\mathrm{y} 0=(100 / 110) * x 0$;
$\mathrm{n}=1$;
$\mathrm{w}=6280 *_{\mathrm{n}}$;
$\mathrm{Zc}=\operatorname{inv}\left(1 / \mathrm{R}+j^{\star} \mathrm{w}^{\star} \mathrm{C}\right)$;
$\mathrm{g} 1=\mathrm{Zc} /\left(\mathrm{Zc}+10+\mathrm{Z}^{\star} \mathrm{w}^{*} \mathrm{~L}\right)$;
$\mathrm{y} 1=\mathrm{g} 1$ * x 1 ;
n = 1;
$\mathrm{w}=6280 *_{\mathrm{n}}$;
$\mathrm{Zc}=\operatorname{inv}\left(1 / R+j{ }^{*} W^{\star} C\right) ;$
$\mathrm{g} 2=\mathrm{Zc} /\left(\mathrm{Zc}+10+\mathrm{Z}_{\mathrm{W}} \mathrm{W}_{\mathrm{L}} \mathrm{L}\right)$;
$y^{2}=\mathrm{g} 2$ * x 2 ;
$\mathrm{n}=3$;
$\mathrm{w}=6280{ }^{\mathrm{n}} \mathrm{n}$;
$Z c=i n v\left(1 / R+j * W^{*} C\right) ;$
g3 $=\mathrm{Zc} /\left(\mathrm{Zc}+10+\mathrm{j}^{\star} \mathrm{w}^{\star} \mathrm{L}\right)$;
y3 = g1 * $x 3$;
n = 4;
$\mathrm{w}=6280{ }^{\mathrm{n}} \mathrm{n}$;
$\mathrm{Zc}=\operatorname{inv}\left(1 / \mathrm{R}+\mathrm{j}^{*} \mathrm{w}^{\star} \mathrm{C}\right)$;
$\mathrm{g} 4=\mathrm{Zc} /\left(\mathrm{Zc}+10+\mathrm{j}^{\star} \mathrm{W}^{\star} \mathrm{L}\right)$;
y $4=94$ * x 4 ;
n $=5$;
$\mathrm{w}=6280 * \mathrm{n}$;
$\mathrm{ZC}=\operatorname{inv}\left(1 / R+j{ }^{*}{ }^{*} \mathrm{C}\right)$;
$\mathrm{g} 5=\mathrm{Zc} /\left(\mathrm{Zc}+10+j{ }^{*}{ }^{*} \mathrm{~L} \mathrm{~L}\right)$;
$\mathrm{y} 5=\mathrm{g} 5$ * x 5 ;
$\mathrm{y}=\mathrm{y} 0$;
$y=y+r e a l(y 1) * \cos (t)-i m a g(y 1) * \sin (t) ;$
$y=y+\operatorname{real}(y 2) * \cos (2 * t)-i m a g(y 2) * \sin (2 * t) ;$
$y=y+r e a l(y 3) * \cos (3 * t)-i m a g(y 3) * \sin (3 * t) ;$
$y=y+r e a l(y 4) * \cos (4 * t)-i m a g(y 4) * \sin (4 * t) ;$
$y=y+\operatorname{real}(y 5) * \cos (5 * t)-i \operatorname{mag}(y 5) * \sin (5 * t) ;$
plot (t0, $x, t 0, y)$

