ECE 320 - Solution to Homework \#7

DC to AC Converters, SCR's Due Monday, February 25th, 2019

DC to AC

Problem 1-3) Find the efficiency of the following DC to AC converters. i.e. find the percentage of the energy in the 1st harmonic

1) $x(t)= \begin{cases}-10 \mathrm{~V} & 0<t<0.5 \\ +10 \mathrm{~V} & 0.5<t<1\end{cases}$

Find the 1st term in the Fourier Transform

```
t = [0:0.0001:1]';
x = -10*(t<0.5) + 10*(t>0.5);
w0 = 2*pi;
c1 = 2*mean(x .* exp (-j*w0*t))
c1 = 0 + 12.731122i
eff = (0.5*abs(c1)^2) / mean(x.^2)
    eff = 0.8104884
```

$-->p l o t(t, x, t, r e a l(c 1) * \cos (w 0 * t)-\operatorname{imag}(c 1) * \sin (w 0 * t))$

2) $x(t)=\left\{\begin{array}{cc}+10 \mathrm{~V} & 0<t<0.25 \\ -10 \mathrm{~V} & 0.5<t<0.75 \\ 0 & \text { otherwise }\end{array}\right.$
$t=[0: 0.0001: 1] ' ;$
$x=10 *(t<0.25)-10 *(t>0.5) . *(t<0.75)$;
$c 1=2 * \operatorname{mean}\left(x \cdot{ }^{*} \exp \left(-j^{*} w 0 * t\right)\right)$
$c 1=6.365561-6.3635612 i$
$\operatorname{eff}=\left(0.5 * a b s(c 1)^{\wedge} 2\right) /$ mean (x.^2)
eff $=0.8103959$
plot(t,x,t,real(c1)*cos(w0*t) -imag(c1)*sin(w0*t))

81.03% efficient DC to AC converter
3) $x(t)=\left\{\begin{array}{cc}+10 \mathrm{~V} & 0<t<0.33 \\ -10 \mathrm{~V} & 0.5<t<0.83 \\ 0 & \text { otherwise }\end{array}\right.$

```
x = 10*(t<0.33) - 10*(t>0.5).*(t<0.83);
c1 = 2*mean(x .* exp(-j*w0*t))
    c1 = 5.579147 - 9.4304409i
eff = (0.5*abs(c1)^2) / mean(x.^2)
    eff = 0.9097750
```

plot (t, $x, t, r e a l(c 1) * \cos (w 0 * t)-i m a g(c 1) * \sin (w 0 * t))$

90.97\% efficient DC to AC converter
4) Assume a firing angle of 40 degrees. Determine the votlage at V1 and V2 (DC and AC)

DC Analysis: If you ignore the -0.7 V offset

$$
V_{a v g}=\frac{V_{p}}{\pi}(1+\cos \theta)
$$

If you include it

$$
\begin{aligned}
& V_{\text {avg }}=\frac{\left(V_{p}+0.7\right)}{\pi}(1+\cos \theta)-0.7 \\
& V_{\text {avg }}=\left(\frac{19.3 \mathrm{~V}}{\pi}\right)\left(1+\cos \left(40^{\circ}\right)\right)-0.7 \\
& V_{\text {avg }}=10.14 \mathrm{~V} \\
& V_{1 d c}=V_{2 d c}=10.14 \mathrm{~V}
\end{aligned}
$$

AC Analysis

$$
\begin{aligned}
& V_{1 p p}=19.3 \mathrm{~V} \\
& V_{2 p p}=\left(\frac{1.63-j 3.70}{(1.63-j 3.70)+j 37.30}\right)\left(19.3 V_{p p}\right) \\
& V_{2 p p}=2.319 V_{p p}
\end{aligned}
$$

5) Modify this circuit so that the votlage at V 2 is 5.00 V (DC) with 250 mV pp ripple.

The voltage at V 1 is approximately

$$
\begin{aligned}
& V_{a v g}=\frac{V_{p}+0.7}{\pi}(1+\cos \theta)-0.7 \\
& 5.00 V=\left(\frac{19.3 V}{\pi}\right)(1+\cos \theta)-0.7
\end{aligned}
$$

$$
\theta=94.14^{0}
$$

To get a ripple of 250 mVpp , change L and C . Pick L to reduce the ripply by 10 x (arbitrary)

$$
\begin{aligned}
|j \omega L| & =10 R \\
754 L & =100 \Omega
\end{aligned}
$$

$$
L=132 m H
$$

This brings the ripple down to 1.93 Vpp . To bring it down to 250 mVpp , choose C so that

$$
\begin{aligned}
& \left|\frac{1}{j \omega C}\right|=\left(\frac{0.250 V}{1.93 V}\right) \cdot 10 \Omega \\
& \frac{1}{754 \cdot C}=1.295 \Omega \\
& C=1023 \mu F
\end{aligned}
$$

6) Check your answer for problem \#5 in PartSim

	V2 (DC)	V2(AC)
Calculated	5.00 V	250 mVpp
Simulated	4.50 V	228 mVpp

