ECE 320 - Homework \#8

Competitors, Schmitt Triggers, Boolean Logic. Due Monday, March 4th, 2019
Assume a thermistor with

$$
R=1000 \cdot \exp \left(\frac{3905}{T}-\frac{3905}{278}\right) \Omega
$$

where T is the temperature in degrees Kelvin $(\mathrm{C}+273$).

Comparitors

1) Design a circuit to

- Turn on a fan when the temperature is more than 20 C , and
- Turn off the fan when the temperature is less than 20C

Assume the fan draws 200mA @ 10V DC. (note: you'll need to use a TIP112 transistor)

20C has a resistance of 1250 Ohms.
Choose a 1 k resistor for the voltage divider. This results in the voltage being

$$
V_{a}=\left(\frac{1250}{1 k+1250}\right) 10 V=5.557 \mathrm{~V}
$$

To saturate the fan,

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& I_{b}>\frac{200 \mathrm{~mA}}{1000}=200 \mu A
\end{aligned}
$$

Let $\mathrm{Ib}=1 \mathrm{~mA}$ (overkill)

$$
R_{b}=\left(\frac{10 V-1.4 V}{1 m A}\right)=8600 \Omega
$$

2) Check your design in PartSim

At 1240 Ohms (slightly hotter than 20C) the fan is on

At 1260 Ohms (slightly colder than 20C) the fan is off

3 (lab) Check your design in lab.

Schmitt Triggers

4) Design a circuit to

- Turn on a fan when the temperature is more than 20 C , and
- Turn off the fan when the temperature is less than 15 C

Assume the fan draws 200mA @ 10V DC. (note: you'll need to use a TIP112 transistor)

Use a 1 k resistor for the votlage divider like before.
At 20 V (fan on)

- $\mathrm{R}=1250 \mathrm{Ohms}$
- $\mathrm{Va}=5.5567 \mathrm{~V}$

At 15 C (fan off)

- $\mathrm{R}=1576 \mathrm{Ohms}$
- $\mathrm{Va}=6.1183 \mathrm{~V}$

The output goes up as the input (Va) goes down. Connect to the minus input
When the output is 0 V , you switch at 5.55 V . Make the offset 5.55 V
The gain is

$$
\operatorname{gain}=\left(\frac{10 V-0 V}{6.118 V-5.556 V}\right)=17.8
$$

Pick the resistors in a $17.8: 1$ ration

5 (lab) Check your design in lab. (note: PartSim doesn't like Schmitt Triggers...)

Boolean Logic

6) Implement the following function using NAND gates

$Y=\bar{B} \bar{D}+\bar{A} C+B C+A \bar{B} \bar{C}+\bar{A} B D$

7) Implement the following function using NOR gates

$$
\bar{Y}=\bar{A} \bar{B} \bar{C} D+A \bar{B} C D+B \bar{C} \bar{D}+A B \bar{C}
$$

Using DeMorgan's theroem

$$
Y=(A+B+C+\bar{D})(\bar{A}+B+\bar{C}+\bar{D})(\bar{B}+C+D)(\bar{A}+\bar{B}+C)
$$

