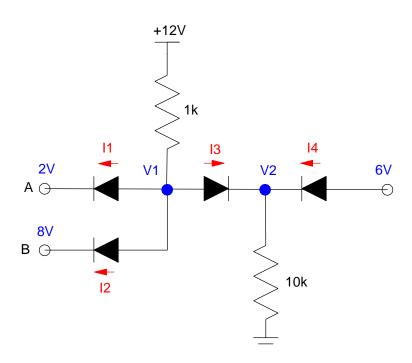
ECE 320 - Final Exam - Name

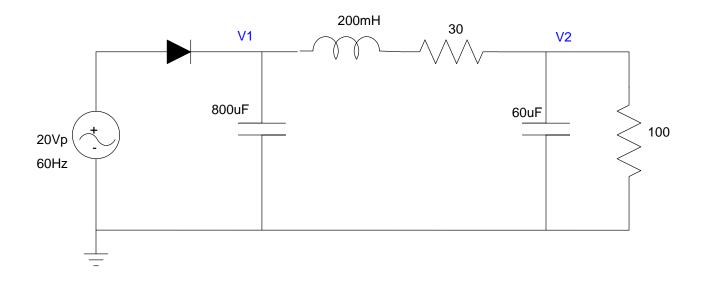
Spring 2020. Due Friday, March 27th, midnight Individual Effort. Matlab, CircuitLab, and Calculators Permitted

No Aid Given, Received, or Observed: (please sign if possible):


- 1) The VI characteristics for a diode are shown on the graph below.
 - Draw the load line for the circuit shown to the left, and
 - Determine the operating point (Vd, Id)

Load Line	Vd	Id
show on graph		

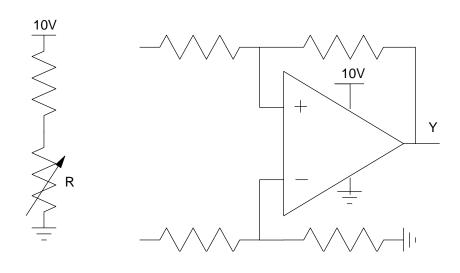
2) Assume ideal silicon diodes. Determine the currents and voltages for the following diode circuit.


I1	I2	I3	I4	V1	V2

3) AC to DC Converter: Calculate the voltages at V1 and V2 (both DC and AC).

- Assume ideal silicon diodes (Vf = 0.7V).
- Note: your answers should be slightly different from problem #4

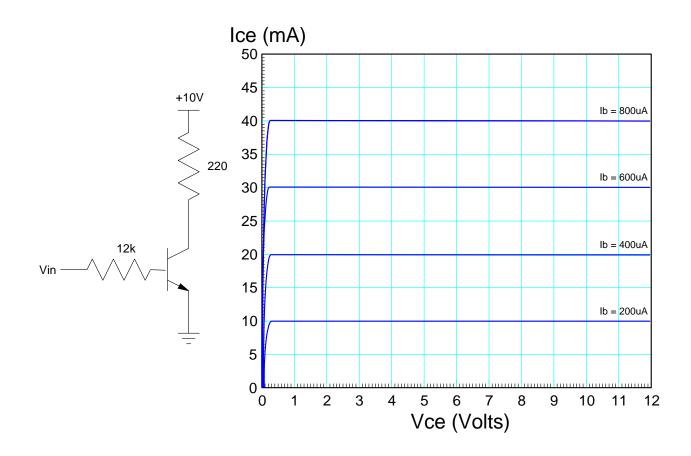
V	71	V	72
DC	AC (V1pp)	DC	AC (V2pp)



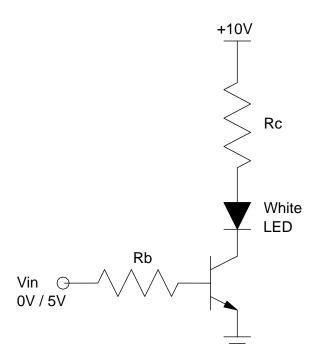
- 4) Design a Schmitt Trigger which
 - Outputs +10V when the temperature goes above 8C,
 - Outputs 0V when the temperature drops below 4C, and
 - No change for 4C < T < 8C

Assume you are using a thermistor with a temperature - resistance relationship of

$$R = 1000 \cdot \exp\left(\frac{3905}{T} - \frac{3905}{298}\right) \Omega$$


where T is the temperature in degrees Kelvin (C + 273).

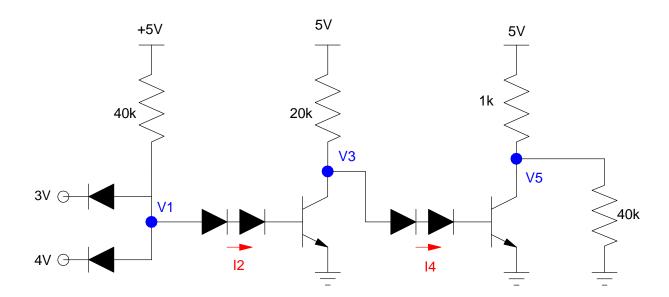
5) Transistors and Load Lines


Determine the following for the following transsitor circuit

Beta	Load Line	Operating Point for		
		a) $Vin = 0V$	b) Vin = 5V	c) Vin = 10V
	show on graph	show on graph	show on graph	show on graph

- 6) Transistor Switch. Determine Rc and Rb so that you can turn on and off a white LED at 3A. Assume
 - Vf = 3.0V @ 4A for the LED
 - The transistor has a gain of 300
 - Vbe = 0.7V, Vce(sat) = 0.2V
 - Vin is capable of driving currents up to 10mA

Min value of Rb	Max value of Rb	Rc

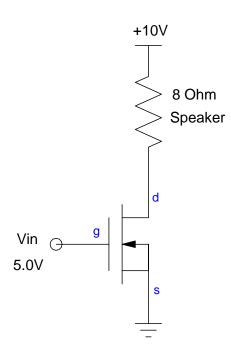


7) Determine the voltages for the following DTL gate. Assume ideal silicon diodes (Vf = 0.7V) and transistors:

Vbe = 0.7V

- Vce(sat) = 0.2V
- $\beta = 100$

V1	I2	V3	I4	V5



8) The characteristics for a MOSFET are

- Part: IRFD-3-{BF
- Current Continuous Drain (Id) @ 25°C 2.4A (Tc)
- Rds On (Max) @ Id, Vgs 100mOhm @ 1.4A, 10V
- Vgs(th) (Max) @ Id 4V @ 250μA

Determine the transconductance gain, kn, Vds, and Ids for the following MOSFET circuit

kn (A/V^2)	Vds (Volts)	Ids (mA)	Rds

Bonus! What does CircuitLab predict the voltage at V2 is for problem #3?