ECE 320-Quiz \#5 - Name

Transistors, H-Bridges, Schmitt Triggers, Buck Converters. February 27, 2020

Transistor Switch

Determine Rb and Rc so that a function generator can turn on and off a 5W LED at 1.00A. Assume

- LED: Vf = 3.0V @ 1.67A
- Transistor: Vbe $=1.4 \mathrm{~V}$, Vce $=0.9 \mathrm{~V}, \beta=1000$ (TIP112)
- Input: $0 \mathrm{~V} / 5 \mathrm{~V}$ binary, capable of up to 20 mA

Min value for Rb	Max value of Rb	Rc
$\mathbf{1 8 0}$ Ohms	$\mathbf{3 6 0 0}$ Ohms	$\mathbf{6 . 1}$ Ohms

Rc:

$$
R_{C}=\left(\frac{10 V-3 V-0.9 V}{1 A}\right)=6.1 \Omega
$$

Rb: $\quad 1 \mathrm{~mA}<\mathrm{Ib}<20 \mathrm{~mA}$

$$
\beta I_{b}>I_{C}=1 A
$$

$I_{b}>1 m A$
$R_{b}=\left(\frac{5 V-1.4 V}{1 m A}\right)=3600 \Omega \quad$ upper limit
$R_{b}=\left(\frac{5 V-1.4 V}{20 m A}\right)=180 \Omega \quad$ lower limit

H-Bridge (analysis)

2) Determine the voltags and currents for the following H-bridge. Assume TIP transistors:

- | Vbe | = 1.4 V
- \mid Vce $\mid=0.9 \mathrm{~V}$ when saturated
- $\beta=1000$

I	I 2	I	V	V 2
86 uA	$\mathbf{4 3} \mathrm{mA}$	$\mathbf{4 3} \mathbf{u A}$	$\mathbf{9 . 1} \mathrm{V}$	$\mathbf{8 . 2 4 V}$

$$
\begin{array}{cll}
I_{1}=\left(\frac{10-1.4}{100 k}\right)=86 \mu A & \left(\frac{10 \mathrm{~V}-0.9 \mathrm{~V}-0.9 \mathrm{~V}}{20}\right)=410 \mathrm{~mA} & I_{3}=\left(\frac{10-1.4}{200 \mathrm{k}}\right)=43 \mu \mathrm{~A} \\
\beta I_{1}=86 \mathrm{~mA} & & \beta I_{3}=43 \mathrm{~mA}
\end{array}
$$

smallest current wins (43mA)
This means $T 1$ is saturated $(V c e=0.9 V)$ and $T 4$ is active $(0.9 V<V c e<9.1 V)$

$$
\begin{aligned}
& V_{1}=10-0.9=9.1 V \\
& V_{2}=V_{1}-43 m A \cdot 20 \Omega
\end{aligned}
$$

H-Bridge (design)

3) Specify R1 and R2 so that the following H-bridge has transistors which are either off or saturated. For these values of R1 and R2, determine the currents. Assume

- | Vbe | = 1.4 V
- \mid Vce $\mid=0.9 \mathrm{~V}$ when saturated
- $\beta=1000$
- I1 and I3 can be 20 mA (or less)

R1	R2	I1	I2	I3
$8.6 k$	$8.6 k$	$1 m A$	$410 m A$	$1 m A$

Ideally, all transistors are either off or saturated

$$
I_{2}=\left(\frac{10-0.9-0.9}{20}\right)=410 m A
$$

To saturate the transistors
$\beta I_{b}>I_{c}$

$$
I_{b}>410 \mu A
$$

Pick a current in the range of

$$
410 \mathrm{uA}<\mathrm{Ib}<20 \mathrm{~mA}
$$

Let $\mathrm{Ib}=1 \mathrm{~mA}$

$$
R_{1}=\left(\frac{10 V-1.4 V}{1 m A}\right)=8.6 k \Omega
$$

ditto for R2

Schmitt Trigger (design)

4) Design a Schmitt Trigger so that the output (Y) is

- $\mathrm{Y}=0 \mathrm{~V}$ when $\mathrm{R}<4000$ Ohms
- $\mathrm{Y}=10 \mathrm{~V}$ when $\mathrm{R}>4500$ Ohms
- No change (0V or 10 V) when $4000<\mathrm{R}<4500$ Ohms

When $\mathrm{R}=4000(\mathrm{Y}=0 \mathrm{~V})$

$$
X=\left(\frac{4000}{4000+4000}\right) 10 V=5.00 V
$$

When $\mathrm{R}=4500(\mathrm{Y}=10 \mathrm{~V})$

$$
X=\left(\frac{4500}{4500+4000}\right) 10 \mathrm{~V}=5.294 \mathrm{~V}
$$

When X goes up, Y goes up. Connect to the + input
When $Y=0$, you switch at $X=5.294 V$. Make the offset 5.294 V
The gain needed is

$$
\text { gain }=\left(\frac{\text { change in output }}{\text { change in input }}\right)=\left(\frac{10 \mathrm{~V}-0 \mathrm{~V}}{5.294 \mathrm{~V}-5.000 \mathrm{~V}}\right)=34.0
$$

Make the resistor ratio 34.0: 1

Buck Converter (analysis)

5) Determine the voltages (V1 and V2, both DC and AC) for the following Buck converter (DC to DC)

V 1		V 2	
$\mathrm{~V} 1(\mathrm{DC})$	$\mathrm{V} 1(\mathrm{AC})$	$\mathrm{V} 2(\mathrm{DC})$	$\mathrm{V} 2(\mathrm{AC})$
15.86 V	$\mathbf{2 0 . 7} \mathrm{Vpp}$	$\mathbf{1 3 . 2 2 ~ V}$	2.131 Vpp

DC:

$$
\begin{aligned}
& V_{1}=(0.8)(20 \mathrm{~V})+(0.2)(-0.7 \mathrm{~V})=15.86 \mathrm{~V} \\
& V_{2}=\left(\frac{50}{50+10}\right) V_{1}=13.22 \mathrm{~V}
\end{aligned}
$$

AC:

$$
\begin{aligned}
& V_{1} \approx 20.7 V_{p p} \\
& V_{2}=\left(\frac{(6.387-j 17.179)}{(6.387-j 17.179)+(10+j 188.4)}\right) \cdot 20.7 V_{p p} \\
& V_{2}=2.131 V_{p p}
\end{aligned}
$$

take the magnitude \& ignore the phase.

Buck Converter (design)

6) Design a Buck converter so that the output is 5.00 V DC with a ripple of 1 Vpp

DC Voltage at V1	Duty Cycle (\% on)	C
$\mathbf{6 . 0 0 ~ V ~}$	$\mathbf{3 2 . 4} \%$	$\mathbf{1 7 . 0 5} \mathbf{u F}$

If $\mathrm{V} 2=5.00 \mathrm{~V}$

$$
V_{1}=\left(\frac{50+10}{50}\right) V_{2}=6.00 \mathrm{~V}
$$

The duty cycle is

$$
\begin{aligned}
& \alpha \cdot 20 V+(1-\alpha)(-0.7 V)=6.00 V \\
& \alpha=\left(\frac{6.7 V}{20.7 V}\right)=32.4 \%
\end{aligned}
$$

From problem \#5, if C = 8uF, the ripple at V2 os 2.131 Vpp
To make the ripple 1.000 Vpp

$$
C_{2}=\left(\frac{2.131}{1.000}\right) 8 \mu F=17.05 \mu F
$$

Bernie Sanders Bonus!!! Whis is more

- The number of votes Bernie Sanders got in the Nevada primary (6,788 votes), or
- The number of voles you'll have if you start with one breeding pair and wait one year?

Bernie Votes: 6,788
\# Voles: 6,338

