
DC to AC, SCT, Boolean Logic. March 5, 2020

1) Determine the Fourier transform for the following waveform (i.e. express the signal in terms of constants and sinusoids):

```
x(t) =
```


2) A DC to AC converter outputs the following waveform:

Determine the efficiency of this DC to AC converter (i.e. the percentage of the energy in the first harmonic)

The Fourier coefficients are as follows:

```
a1 = 2*mean(x .* exp(-j*pi*t))
a1 = -18.657842i

a2 = 2*mean(x .* exp(-j*2*pi*t))
a2 = 0

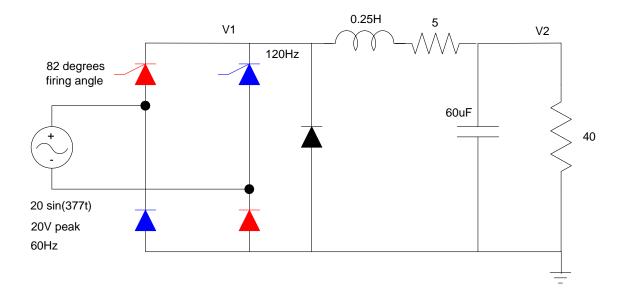
a3 = 2*mean(x .* exp(-j*3*pi*t))
a3 = + 1.9940369i

a4 = 2*mean(x .* exp(-j*4*pi*t))
a4 = 0

a5 = 2*mean(x .* exp(-j*5*pi*t))
a5 = + 1.0688105i

a6 = 2*mean(x .* exp(-j*5*pi*t))
a6 = 0

a7 = 2*mean(x .* exp(-j*7*pi*t))
a7 = + 0.6376461i
```

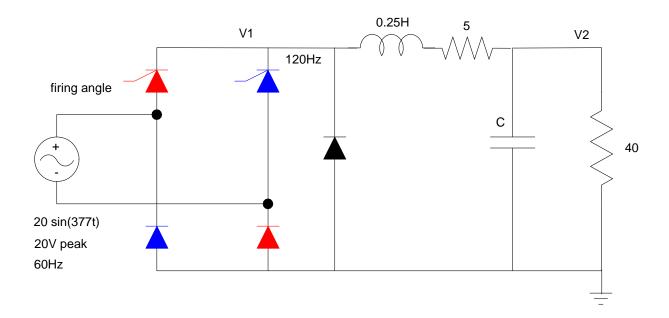

SCR: Analysis

3) Determine the voltages at V1 and V2 for the following AC to DC converter. Assume a firing angle of 82 degrees

V1		V2		
DC mean(V1)	AC (V1pp)	DC mean(V2)	AC (V2pp)	

Note: the relationship between firing angle and the DC voltage is

$$V_{avg} = \left(\frac{19.3}{\pi}\right)(1+\cos\theta) - 0.7$$


SCR Design

- 4) Design an AC to DC converter so that
 - The output (V2) is 5.00V (DC)
 - With a ripple of 1Vpp (AC)

V1 (DC)	Firing Angle	С	V2 (DC)
			5.00 V

Note: the relationship between firing angle and the DC voltage is

$$V_{avg} = \left(\frac{19.3}{\pi}\right)(1 + \cos\theta) - 0.7$$

5) Design a circuit to implement the following logic using NAND gates (i.e. circle the ones)

e(A,B,C,D)		CD			
		00	01	11	10
AB	00	1	0	0	1
	01	0	0	0	1
	11	X	X	X	X
	10	1	0	X	X

6) Design a circuit to implement the following logic using NOR gates (i.e. circle the zeroes)

e(A,B	,C,D)	CD			
		00	01	11	10
AB	00	1	0	0	1
	01	0	0	0	1
	11	X	X	X	X
	10	1	0	X	X

Bernie Sanders Bonus!!! Did the following events come before or after Bernie Sanders was born? (Sept 1941):

The invention of the transistor
 The first wind energy plant
 The first programmable computer
 before after
 after