ECE 320 - Quiz #6 - Name

DC to AC, SCT, Boolean Logic. March 5, 2020

1) Determine the Fourier transform for the following waveform (i.e. express the signal in terms of constants and sinusoids):

$x(t) = 7.00 + 6.2 \cos(785t - 99^{\circ})$

DC: max = 13.2V, min = 0.8V, average = 7.00V

AC: Vpp = 12.4Vpp Vp = 6.2

Period = 8ms

f = 1/period = 125Hz

w = 2 pi f = 785 rad/sec

Delay = 2.2ms

$$\phi = \left(\frac{2.2ms}{8ms}\right) 360^{\circ} = 99^{\circ} \text{ delay (negative phase)}$$

Determine the efficiency of this DC to AC converter (i.e. the percentage of the energy in the first harmonic)

 ${\rm efficiency}=0.984$

The Fourier coefficients are as follows:

al = 2*mean(x .* exp(-j*pi*t)) al = -18.657842i	Energ	y = 1/2 V ^2 173.91W
<pre>a2 = 2*mean(x .* exp(-j*2*pi*t)) a2 = 0</pre>		0 W
a3 = 2*mean(x .* exp(-j*3*pi*t)) a3 = + 1.9940369i		1.988W
a4 = 2*mean(x .* exp(-j*4*pi*t)) a4 = 0		OW
a5 = 2*mean(x .* exp(-j*5*pi*t)) a5 = + 1.0688105i		0.571W
<pre>a6 = 2*mean(x .* exp(-j*6*pi*t)) a6 = 0</pre>		OW
a7 = 2*mean(x .* exp(-j*7*pi*t)) a7 = + 0.6376461i		0.203₩
	Total =	176.67W

 $\eta = \frac{173.91W}{176.67W} = 0.984$

SCR: Analysis

3) Determine the voltages at V1 and V2 for the following AC to DC converter. Assume a firing angle of 82 degrees

V	/1	V2		
DC mean(V1)	AC (V1pp)	DC mean(V2)	AC (V2pp)	
6.298 V	19.3 Vpp	5.599 V	2.168 Vpp	

Note: the relationship between firing angle and the DC voltage is

$$V_{avg} = \left(\frac{19.3}{\pi}\right)(1 + \cos\theta) - 0.7$$

DC:
$$V_1 = 6.298V$$

 $V_2 = \left(\frac{40}{40+5}\right)V_1 = 5.599V$

AC: $\max(V1) = 18.6V$ $\min(V1) = -0.7V$ $V_1 = 19.3V_{pp}$ $V_2 = \left(\frac{(9.35-j16.93)}{(9.35-j16.93)+(5+j188.5)}\right) 19.3V_{pp}$ $V_2 = 2.168V_{pp}$

SCR Design

4) Design an AC to DC converter so that

- The output (V2) is 5.00V (DC)
- With a ripple of 1Vpp (AC)

V1 (DC)	Firing Angle	С	V2 (DC)
5.265 V	88.306 deg	130uF	5.00 V

Note: the relationship between firing angle and the DC voltage is

$$V_{avg} = \left(\frac{19.3}{\pi}\right)(1 + \cos\theta) - 0.7$$

DC:

$$V_{2} = 5.00V = \left(\frac{40}{40+5}\right)V_{1}$$
$$V_{1} = 5.625V = \left(\frac{19.3}{\pi}\right)(1 + \cos\theta) - 0.7$$
$$\theta = 88.306^{0}$$

AC:

C = 60uF produced 2.168Vpp at V2 For 1Vpp $C = \left(\frac{2.168V_{pp}}{1.00V_{pp}}\right) 60\mu F = 130\mu F$ 5) Design a circuit to implement the following logic using NAND gates (i.e. circle the ones)

e(A,B	,C,D)	CD			
		00	01	11	10
	00	1	0	0	1
	01	0	0	0	1
AB	11	Х	Х	Х	Х
	10	1	0	X	Х

 $y = \overline{B}\overline{D} + C\overline{D}$

6)	Design a	circuit	to in	nplement	the	follow	ving l	ogic	using	NOR	gates	(i.e.	circle	the zeroes)
<i>v</i> ,	2001011	• • • • • • •		-p.e		10110 //		0.0-0	B		84440	(••.•		/

e(A,B	,C,D)	CD			
			01	11	10
	00	1	0	0	1
	01	0	0	0	1
AB	11	Х	Х	Х	Х
	10	1	0	Х	Х

$$\overline{Y} = D + B\overline{C}$$

using DeMorgan's theorem

$$Y = \overline{D}\left(\overline{B} + C\right)$$

Bernie Sanders Bonus!!! Did the following events come before or after Bernie Sanders was born? (Sept 1941):

•	The invention of the transistor	before	<u>after</u>	1951 Bell Labs, USA
•	The first wind energy plant	<u>before</u>	after	1931, USSR
•	The first programmable computer	<u>before</u>	after	May 1941, Germany