ECE 320-Quiz \#6 - Name

DC to AC, SCT, Boolean Logic. March 5, 2020

1) Determine the Fourier transform for the following waveform (i.e. express the signal in terms of constants and sinusoids):

$$
x(t)=7.00+6.2 \cos \left(785 t-99^{\circ}\right)
$$

$\mathrm{DC}: \max =13.2 \mathrm{~V}, \min =0.8 \mathrm{~V}$, average $=7.00 \mathrm{~V}$
$\mathrm{AC}: \mathrm{Vpp}=12.4 \mathrm{Vpp} \quad \mathrm{Vp}=6.2$
Period $=8 \mathrm{~ms}$

$$
\begin{aligned}
& \mathrm{f}=1 / \text { period }=125 \mathrm{~Hz} \\
& \mathrm{w}=2 \mathrm{pif} \mathrm{f}=785 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Delay $=2.2 \mathrm{~ms}$

$$
\phi=\left(\frac{2.2 \mathrm{~ms}}{8 \mathrm{~ms}}\right) 360^{\circ}=99^{\circ} \text { delay (negative phase) }
$$

2) ADC to AC converter outputs the following waveform:

Determine the efficiency of this DC to AC converter (i.e. the percentage of the energy in the first harmonic)

$$
\text { efficiency }=0.984
$$

The Fourier coefficients are as follows:

```
a1 = 2*mean(x .* exp(-j*pi*t))
    a1 = -18.657842i
a2 = 2*mean(x .* exp (-j*2*pi*t))
a3 = 2*mean(x .* exp(-j*3*pi*t))
    a3 = + 1.9940369i 1.988W
a4= 2*mean(x .* exp (-j*4*pi*t))
a5 = 2*mean(x.* exp (-j*5*pi*t))
    a5 = + 1.0688105i
a6 = 2*mean(x .* exp(-j*6*pi*t))
    a6 = 0 0W
a7 = 2*mean(x.* exp(-j*7*pi*t))
    a7 = +0.6376461i 0.203W
Total = 176.67W
\eta=\frac{173.91W}{176.67W}=0.984
```


SCR: Analysis

3) Determine the voltages at V1 and V2 for the following AC to DC converter. Assume a firing angle of 82 degrees

V 1		V 2	
DC $\operatorname{mean}(\mathrm{V} 1)$	AC $(\mathrm{V} 1 \mathrm{pp})$	DC $\operatorname{mean}(\mathrm{V} 2)$	AC $(\mathrm{V} 2 \mathrm{pp})$
$\mathbf{6 . 2 9 8} \mathrm{V}$	$\mathbf{1 9 . 3} \mathrm{Vpp}$	$\mathbf{5 . 5 9 9} \mathrm{V}$	$\mathbf{2 . 1 6 8 ~ V p p}$

Note: the relationship between firing angle and the DC voltage is
$V_{\text {avg }}=\left(\frac{19.3}{\pi}\right)(1+\cos \theta)-0.7$

DC: $\quad V_{1}=6.298 V$

$$
V_{2}=\left(\frac{40}{40+5}\right) V_{1}=5.599 \mathrm{~V}
$$

AC: $\quad \max (\mathrm{V} 1)=18.6 \mathrm{~V}$
$\min (\mathrm{V} 1)=-0.7 \mathrm{~V}$
$V_{1}=19.3 V_{p p}$
$V_{2}=\left(\frac{(9.35-j 16.93)}{(9.35-j 16.93)+(5+j 188.5)}\right) 19.3 V_{p p}$
$V_{2}=2.168 V_{p p}$

SCR Design

4) Design an AC to DC converter so that

- The output (V2) is 5.00 V (DC)
- With a ripple of $1 \mathrm{Vpp}(\mathrm{AC})$

$\mathrm{V} 1(\mathrm{DC})$	Firing Angle	C	$\mathrm{V} 2(\mathrm{DC})$
5.265 V	88.306 deg	130 uF	5.00 V

Note: the relationship between firing angle and the DC voltage is

$$
V_{\text {avg }}=\left(\frac{19.3}{\pi}\right)(1+\cos \theta)-0.7
$$

DC:

$$
\begin{aligned}
& V_{2}=5.00 V=\left(\frac{40}{40+5}\right) V_{1} \\
& V_{1}=5.625 V=\left(\frac{19.3}{\pi}\right)(1+\cos \theta)-0.7 \\
& \theta=88.306^{\circ}
\end{aligned}
$$

AC:
$\mathrm{C}=60 \mathrm{uF}$ produced 2.168 Vpp at V 2
For 1Vpp

$$
C=\left(\frac{2.168 V_{p p}}{1.00 V_{p p}}\right) 60 \mu F=130 \mu F
$$

5) Design a circuit to implement the following logic using NAND gates (i.e. circle the ones)

e(A,B,C,D)	CD					
			00	01	11	10
AB	00	1	0	0	1	
	01	0	0	0	1	
	11	x	x	x	x	
	10	1	0	x	x	

$$
y=\bar{B} \bar{D}+C \bar{D}
$$

6) Design a circuit to implement the following logic using NOR gates (i.e. circle the zeroes)

e(A,B,C,D)	CD					
			00	01	11	10
AB	00	1	0	0	1	
	01	0	0	0	1	
	11	x	x	x	x	
	10	1	0	x	x	

$$
\bar{Y}=D+B \bar{C}
$$

using DeMorgan's theorem

$$
Y=\bar{D}(\bar{B}+C)
$$

Bernie Sanders Bonus!!! Did the following events come before or after Bernie Sanders was born? (Sept 1941):

- The invention of the transistor
- The first wind energy plant
- The first programmable computer

| before | after
 before | 1951 Bell Labs, USA |
| :--- | :--- | :--- | :--- |
| after | 1931, USSR | |
| before | after | May 1941, Germany |

before after
before after

