ECE 320 - Homework \#3 Solution

Ideal Diodes, LEDs, AC to DC Converters. Due Monday, February 3rd
Please make the subject "ECE 320 HW\#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Assume ideal silicon didoes $(\mathrm{Vf}=0.7 \mathrm{~V})$. Determine $\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3\}$ and $\{\mathrm{Id} 1, \mathrm{Id} 2, \mathrm{Id} 3\}$

Assume diodes $\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3$ are on, d 4 is off. Then

- $\mathrm{V} 3=0.7 \mathrm{~V}$
- $\mathrm{V} 2=1.4 \mathrm{~V}$
- $\mathrm{V} 1=2.1 \mathrm{~V}$

Check: Are the currents positive?

$$
29 m A=I_{d 1}+0.7 m A+0 m A+2.1 m A
$$

$I_{d 1}=26.2 m A$
check: Idl > 0 (on)
$I_{d 2}=I_{d 1}+0.7 m A$
$I_{d 2}=26.9 \mathrm{~mA}$
$I_{d 3}=I_{d 2}=26.9 \mathrm{~mA}$
check: $I d 2>0$ (on)
$V_{d 4}=V_{3}-V_{1}=-1.4 V<0.7 \mathrm{~V}$ check: $I d 3>0$ (on)
check: Vd3 < 0.7V (off)

	Calculations hw \#2 problem 6	Simulation hw \#2 problem 7	Idea Diode hw \#3
V1	2.4404 V	2.08 V	2.10 V
V2	1.6281 V	1.39 V	1.40 V
V3	0.8141 V	0.695 V	0.70 V
V4	2.4403 V	2.08 V	2.10 V

2) Change Vin to 2.0 V . Determine $\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3\}$ and $\{\mathrm{Id} 1, \mathrm{Id} 2, \mathrm{Id} 3\}$ assuming ideal silicon diodes

All three diodes can't be on. This causes $\mathrm{V} 1=2.1 \mathrm{~V}>2.0 \mathrm{~V}$ and current flows backwards Assume D1 = off, D2 = on, D3 = on, D4 = off. Write the voltage node equation at V1

$$
\begin{aligned}
& \left(\frac{V_{1}-2}{100}\right)+\left(\frac{V_{1}-1.4}{1000}\right)+0+\left(\frac{V_{1}}{1000}\right)=0 \\
& V_{1}=1.783 V
\end{aligned}
$$

Check: Are the currents through the "on" diodes positive?

$$
\begin{aligned}
& I_{d 2}=\left(\frac{V_{1}-1.4}{1000}\right)>0 \\
& I_{d 3}=I_{d 2}>0
\end{aligned}
$$

Are the voltages across the "off" diodes less than 0.7 V ?

$$
\begin{aligned}
& V_{d 1}=1.783 V-1.4 V=0.383 V<0.7 V \\
& V_{d 4}=0.7 V-1.783 V=-1.083 V<0.7 V
\end{aligned}
$$

3) Assume ideal silicon didoes $(\mathrm{Vf}=0.7 \mathrm{~V})$. Determine $\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3\}$ and $\{\mathrm{Id} 1, \mathrm{Id} 2, \mathrm{Id} 3\}$

Assume all diodes are on.

- $\mathrm{V} 4=0.7 \mathrm{~V}$
- $\mathrm{V} 3=1.4 \mathrm{~V}$
- $\mathrm{V} 2=\mathrm{V} 1-0.7 \mathrm{~V}$

The last equation is then from the voltage node equation at V 1 (super-node)

$$
\left(\frac{V_{1}-5}{100}\right)+\left(\frac{V_{1}-0.7-1.4}{1000}\right)+\left(\frac{V_{1}-1.4}{1000}\right)+\left(\frac{V_{1}-0.7}{1000}\right)+\left(\frac{V_{1}}{1000}\right)=0
$$

$V_{1}=3.871 \mathrm{~V}$

	Calculations hw 2 problem 9	Simulation hw 2 problem 10	ideal diode hw 3
V1	3.8849 V	3.83 V	3.871 V
V 2	3.2058 V	3.27 V	3.171 V
V 3	1.4783 V	1.23 V	1.40 V
V 4	0.7538 V	0.63 V	0.70 V

LEDs

The specifications for a Piranah RGB LED are

Color	Vf @ 20mA	mcd @ 20mA
red	2.0 V	10,000
green	3.2 V	10,000
blue	3.2 V	10,000

4) Design a circuit to drive these LEDs with a 10 V source to produce baby blue:

- $\operatorname{Red}=9450 \mathrm{mcd}$
- Green $=549 \mathrm{mcd}$
- Blue $=7960 \mathrm{mcd}$

$$
\begin{aligned}
& I_{r}=\left(\frac{9450 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=18.9 \mathrm{~mA} \\
& R_{r}=\left(\frac{10 \mathrm{~V}-2.0 \mathrm{~V}}{18.9 \mathrm{~mA}}\right)=423 \Omega \\
& I_{g}=\left(\frac{549 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=1.098 \mathrm{~mA} \\
& R_{g}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{1.098 \mathrm{~mA}}\right)=6193 \Omega
\end{aligned}
$$

$$
I_{b}=\left(\frac{7,960 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=15.92 \mathrm{~mA}
$$

$$
R_{b}=\left(\frac{10 V-3.2 \mathrm{~V}}{15.92 m A}\right)=427 \Omega
$$

$+10 \mathrm{~V}$

5) Design a circuit to drive these LEDs with a 10 V source producing olive green:

- $\operatorname{Red}=7529 \mathrm{mcd}$
- Green $=9450 \mathrm{mcd}$
- Blue $=705 \mathrm{mcd}$

Color	Vf @ 20mA	mcd @ 20mA
red	2.0 V	10,000
green	3.2 V	10,000
blue	3.2 V	10,000

	Red	Green	Blue
mcd	7,529	9,450	705
current (mA)	15.06	18.9	1.41
$\mathrm{Vf}(\mathrm{V})$	2	3.2	3.2
R (Ohms)	531.28	359.79	$4,822.7$

Other colors can be obtained from
https://www.rapidtables.com/web/color/color-wheel.html

AC to DC Converters

6) Assume $\mathrm{C} 1=100 \mathrm{uF}$ and $\mathrm{C} 2=10 \mathrm{uF}$. Determine the votlages at V 1 and $\mathrm{V} 2(\mathrm{DC}$ and AC$)$

Current:

$$
\begin{aligned}
& \max \left(V_{1}\right)=19.3 \mathrm{~V} \\
& I \approx\left(\frac{19.3 V}{1000+277}\right)=15.11 m A \\
& I=C \frac{d V}{d t} \\
& 15.11 m A=100 \mu F \cdot \frac{d V}{1 / 60 s} \\
& d V=2.519 V_{p p} \quad \text { AC }: \mathrm{V} 1 \mathrm{pp} \\
& V_{1: D C}=19.3 V-\frac{1}{2} V_{1 p p}=18.04 \mathrm{~V} \\
& V_{2: D C}=\left(\frac{1000}{1000+277}\right) 18.04 V=14.13 \mathrm{~V} \\
& V_{2: A C}=\left(\frac{-j 265 \| 1000}{(-j 265 \| 1000)+(277+j 3770)}\right) 2.519 V_{p p} \\
& V_{2: A C}=\left(\frac{65.73-j 247.8}{(65.73-j 247.8)+(277+j 3770)}\right) 2.519 V_{p p} \\
& V_{2: A C}=182.5 m V_{p p}
\end{aligned}
$$

Simuate this circuit and verity your calculations (V1 and V2, both DC and AC)

	Simulation				Calculation	
	\max	\min	DC	AC	DC	AC
V1	19.22	17.13	18.18	2.09	18.04 V	2.519 Vpp
V2	14.63	13.61	14.12	1.02	14.13 V	0.182 Vpp

7) Lab: Build this circuit in lab and measure the voltages at V1 and V2 (both DC and AC). Note that you don't need to add a 277 Ohm resistor - that is the resistance of the 10 H inductors we have in stock (approx).
8) Find C 1 and C 2 so that the ripple at V 1 is 2 Vpp and the ripple at V 2 is 500 mVpp .

$$
\begin{aligned}
& V_{1: D C}=19.3 \mathrm{~V}-\frac{1}{2} \cdot 2 V_{p p}=18.3 \mathrm{~V} \\
& I=\frac{18.3 \mathrm{~V}}{1000+277}=14.33 \mathrm{~mA} \\
& I=C \frac{d V}{d t}
\end{aligned}
$$

$$
14.33 m A=C_{1} \cdot \frac{2 V_{p p}}{1 / 60 s}
$$

$$
C_{1}=119 \mu F
$$

If $\mathrm{C} 2=0$:

$$
\begin{aligned}
& V_{2}=\left(\frac{1000}{1000+277+j 3770}\right) 2 V_{p p} \\
& V_{2}=502 m V_{p p}
\end{aligned}
$$

This meets the specs, so C2 isn't needed. If V2 was 250 mVpp , then

$$
\begin{aligned}
& Z_{C 2}=\left(\frac{250 \mathrm{mV}}{502 \mathrm{mV}}\right) 1000 \Omega=497 \Omega \\
& \left|\frac{1}{j \omega C_{2}}\right|=\frac{1}{377 \cdot C_{2}}=497 \Omega \\
& C_{2}=5.33 \mu F
\end{aligned}
$$

