## ECE 320 - Homework \#4 Solution

Max/Min Circuits, Clipper Circuits, Transistor Theory. Due Monday, Feb 10th

## Max/Min:

1) Determine the voltages and currents for the following max/min circuit. What function does this circuit implement? $Y=f(A, B, C, D)$

2) Check your results in PartSim (or similar program)


## Clipper Circuits:

3) Design a circuit to approximate the following function subject to the following requirements:

- Input: $0 . .10 \mathrm{~V}$, capable of 100 mA
- Output: 100k resistor
- Relationship: Graph below, $+/-200 \mathrm{mV}$


Op-Amp: To get an intial gain of 1.81 , add an op-amp with a gain of 1.81

$$
\text { gain }=1+\frac{R_{16}}{R_{17}}
$$

Let R17 = 1k

$$
R 16=810
$$

Stage 1: Zener voltage $=4.0 \mathrm{~V}$

$$
\begin{aligned}
& \text { gain }=\left(\frac{R_{19}}{R_{19+R_{18}}}\right) \cdot 1.81=1.11 \\
& \left(\frac{R_{19}}{R_{19}+1 k}\right)=\frac{1.11}{1.81}=0.613 \\
& R_{19}=\left(\frac{0.613}{1-0.613}\right) 1 k=1586 \Omega
\end{aligned}
$$

Stage 2: Zener voltage $=8.0 \mathrm{~V}$

$$
\begin{aligned}
& \text { gain }=\left(\frac{R_{\text {net }}}{R_{\text {net }}+R_{18}}\right) \cdot 1.81=0.46 \\
& R_{\text {net }}=341 \Omega=R_{19} \| R_{20}
\end{aligned}
$$

$$
R_{20}=430 \Omega
$$

4) Check your design in PartSim


5) Design a circuit which meets the following requirements:

- Input: -10 .. +10 V , capable of 100 mA
- Output: 1k resistor
- Relationship:

$$
V_{\text {out }}=\left\{\begin{array}{cc}
+5 \mathrm{~V} & V_{\text {in }}>+5 \mathrm{~V} \\
V_{\text {in }} & -5 \mathrm{~V}<V_{\text {in }}<+5 \mathrm{~V} \\
-5 \mathrm{~V} & V_{\text {in }}<-5 \mathrm{~V}
\end{array}\right.
$$



Both diodes are 4.3 V zeners


## Transistors

6) Determine the current gain, $\beta$, for the transistor show below. Also label the off, active, and saturated regions.

$$
\beta=\left(\frac{250 m A}{5 m A}\right)=50
$$


7) Draw the load-line and determine the Q-point for
$\mathrm{Vin}=0 \mathrm{~V}$

- $\mathrm{Ib}=0$
- $\mathrm{Ic}=0$
- Q-Point: ( $10 \mathrm{~V}, 0 \mathrm{~mA}$ ) off
$\mathrm{Vin}=3 \mathrm{~V}$

$$
\begin{aligned}
& I_{b}=\left(\frac{5 V-0.7 \mathrm{~V}}{1000 \Omega}\right)=2.3 \mathrm{~mA} \\
& \beta I_{b}=115 \mathrm{~mA}
\end{aligned}
$$

Q-Point: ( $5.4 \mathrm{~V}, 115 \mathrm{~mA}$ ) active
Vin $=6 \mathrm{~V}$

$$
\begin{aligned}
& I_{b}=\left(\frac{6 \mathrm{~V}-0.7 \mathrm{~V}}{1000 \Omega}\right)=5.3 \mathrm{~mA} \\
& \beta I_{b}=265 \mathrm{~mA}>\frac{10 \mathrm{~V}-0.2 \mathrm{~V}}{40 \Omega}=245 \mathrm{~mA}
\end{aligned}
$$

Q-Point: ( $0.2 \mathrm{~V}, 245 \mathrm{~mA}$ ) saturated


