ECE 320 - Homework #5

Transistors used as a Switch, H-Bridges. Due Wednesday, February 10th

Transistor Switch

Assume a TIP112 transistor (NPN) and TIP117 (PNP) (\$0.34 each)

 $\beta = 1000$ min ($|V_{ce}|$) = 0.9V max (I_c) = 4A

1) Design a circuit to meet the following requirements (i.e. a transistor used as a switch)

Input: 0V / 5V binary signal capable of 20mA

• Output: DC Motor which draws 200mA @ 10V Relationship:

- When Vin = 0V, 0V is applied to the motor
- When Vin = 5V, 10V is applied to the motor +/- 1V

Model the Motor as a resistor:

$$R_{motor} \approx \left(\frac{10V}{200mA}\right) = 50\Omega$$

Pick Rb to saturate the transistor when Vin = 5V

$$\beta I_b > I_c$$
$$I_b > \frac{I_c}{\beta} = \frac{200mA}{1000} = 200\mu A$$

Let Ib = 1mA

$$R_b = \left(\frac{5V - 1.4V}{1mA}\right) = 3.6k\Omega$$

- 2) Check your design in PartSim
 - Model the motor as a 20 Ohm resistor (200mA @ 10V)
 - When Vin = 0V, is 0A flowing ni the motor?
 - When Vin = 5V, is 200mA flowing through the motor (i.e. the 20 Ohm resistor)?

note:

- Use a 50 Ohm resistor to model the motor (200mA @ 10V)
- Use a 3904 transistor (Vendor Parts Fairchild NPN 3904)

The gain of a 3904 transisor is only 200. This results in the transistor being in the active mode (Vce > 0.2V). If you use two transistors as a Darlington pair, the gain becomes 2002

3) Check your design in lab.

- When Vin = 0V, are the voltages and currents what you calculated and simulated?
 When Vin = 5V, are the voltages and currents what you simullated?

Vin = 0V (off)	Calculated porblem 1	Simulated problem 2	Measured problem 3
Vin	0.0V	0.0V	0.0V
Vbe	0.0V	0.0V	0.0V
Vce	10.0V	10.0V	10.0V
lc	0.0 mA	0.0 mA	0.0 mA (calculated from Vin and Vc)

Vin = 5V (on)	Calculated porblem 1	Simulated problem 2	Measured problem 3
Vin	5.0V	5.00 V	5.00 V
Vbe	1.40 V	1.519 V	1.39 V
Vce	0.90 V	0.815 V	0.68 V
lc	182 mA	184 mA	1A (stalled) 43mA (no load)

H-Bridges

- 4) Determine the voltages and currents for the following H-bridge. Assume TIP transistors
 - | Vbe | = 1.4V
 - $\beta = 1000$
 - $V_{ce(sat)} = 0.9V$

I2 is at most

$$\max(I_2) = \left(\frac{10V - 0.9V - 0.9V}{50\Omega}\right) = 164mA$$

The current is then

$$I_2 = \min(143.3mA, 164mA, 107.5mA) = 107.5mA$$

This means

 $V_4 = 0.9V$ $V_5 = V_4 + 50I_2 = 6.275V$ $transistor \ 3 \ is \ active: \ 0.2V < Vce < 10V$

5) Design an H-Bridge cable of running a DC servo motor forward (+10V), reverse (-10V) and stop (0V). Assume the DC servo motor draws 200mA @ 10V.

Drop the base resistors so that

$$\beta I_b > I_c = 164mA$$

 $I_b > 164\mu A$

Let Ib = 1mA

$$R_b = \left(\frac{10V - 1.4V}{1mA}\right) = 8.6k\Omega$$

6) Check your design for problem #2 in PartSim (or similar program)

	V4	V5
Calculated	9.1 V	0.9 V
Simulated	9.130 V	0.8159 V

- 7) Lab: Build your circuit in lab and verify it works for all three states (forward, reverse, stop).
 - note: Check Vce. If it's 0.9V, the transistor is saturated (on)