ECE 320 - Homework \#5

Transistors used as a Switch, H-Bridges. Due Wednesday, February 10th

Transistor Switch

Assume a TIP112 transistor (NPN) and TIP117 (PNP) (\$0.34 each)

$$
\beta=1000 \quad \min \left(\left|V_{c e}\right|\right)=0.9 \mathrm{~V} \quad \max \left(I_{c}\right)=4 A
$$

1) Design a circuit to meet the following requirements (i.e. a transistor used as a switch)

Input: $0 \mathrm{~V} / 5 \mathrm{~V}$ binary signal capable of 20 mA

- Output: DC Motor which draws 200mA @ 10V

Relationship:

- When Vin $=0 \mathrm{~V}, 0 \mathrm{~V}$ is applied to the motor
- When Vin $=5 \mathrm{~V}, 10 \mathrm{~V}$ is applied to the motor $+/-1 \mathrm{~V}$

Model the Motor as a resistor:

$$
R_{\text {motor }} \approx\left(\frac{10 \mathrm{~V}}{200 \mathrm{~mA}}\right)=50 \Omega
$$

Pick Rb to saturate the transistor when Vin $=5 \mathrm{~V}$

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& I_{b}>\frac{I_{c}}{\beta}=\frac{200 \mathrm{~mA}}{1000}=200 \mu \mathrm{~A}
\end{aligned}
$$

Let $\mathrm{Ib}=1 \mathrm{~mA}$

$$
R_{b}=\left(\frac{5 V-1.4 V}{1 m A}\right)=3.6 k \Omega
$$

2) Check your design in PartSim

- Model the motor as a 20 Ohm resistor (200 mA @ 10 V)
- When Vin $=0 \mathrm{~V}$, is 0 A flowing ni the motor?
- When Vin $=5 \mathrm{~V}$, is 200 mA flowing through the motor (i.e. the 20 Ohm resistor)?
note:
- Use a 50 Ohm resistor to model the motor ($200 \mathrm{~mA} @ 10 \mathrm{~V}$)
- Use a 3904 transistor (Vendor Parts - Fairchild - NPN - 3904)

The gain of a 3904 transisor is only 200. This results in the transistor being in the active mode (Vce $>0.2 \mathrm{~V}$). If you use two transistors as a Darlington pair, the gain becomes 2002

3) Check your design in lab.

- When Vin $=0 \mathrm{~V}$, are the voltages and currents what you calculated and simulated?
- When Vin $=5 \mathrm{~V}$, are the voltages and currents what you simullated?

Vin = 0V (off)	Calculated porblem 1	Simulated problem 2	Measured problem 3
Vin	0.0 V	0.0 V	0.0 V
Vbe	0.0 V	0.0 V	0.0 V
Vce	10.0 V	10.0 V	10.0 V
Ic	0.0 mA	0.0 mA	(calculated from Vin and Vc)

Vin = 5V (on)	Calculated porblem 1	Simulated problem 2	Measured problem 3
Vin	5.0 V	5.00 V	5.00 V
Vbe	1.40 V	1.519 V	1.39 V
Vce	0.90 V	0.815 V	0.68 V
Ic	182 mA	184 mA	$1 \mathrm{~A}(\mathrm{stalled})$
43 mA (no load)			

H-Bridges

4) Determine the voltages and currents for the following H-bridge. Assume TIP transistors

- $\quad|\mathrm{Vbe}|=1.4 \mathrm{~V}$
- $\beta=1000$
- $\mathrm{V}_{\mathrm{ce}(\mathrm{sat})}=0.9 \mathrm{~V}$

$$
\begin{array}{ll}
I_{1}=\left(\frac{10 \mathrm{~V}-1.4 \mathrm{~V}}{60 \mathrm{k}}\right)=143.3 \mu A & I_{3}=\left(\frac{10 \mathrm{~V}-1.4 \mathrm{~V}}{80 \mathrm{k}}\right)=107.5 \mu A \\
\beta I_{1}=143.3 \mathrm{~mA} & \beta I_{3}=107.5 \mathrm{~mA}
\end{array}
$$

I2 is at most

$$
\max \left(I_{2}\right)=\left(\frac{10 \mathrm{~V}-0.9 \mathrm{~V}-0.9 \mathrm{~V}}{50 \Omega}\right)=164 \mathrm{~mA}
$$

The current is then

$$
I_{2}=\min (143.3 m A, 164 m A, 107.5 m A)=107.5 m A
$$

This means

$$
\begin{array}{ll}
V_{4}=0.9 \mathrm{~V} & \text { transistor } 1 \text { is saturated: } V c e=0.9 \mathrm{~V} \\
V_{5}=V_{4}+50 I_{2}=6.275 \mathrm{~V} & \text { transistor } 3 \text { is active: } 0.2 \mathrm{~V}<V c e<10 \mathrm{~V}
\end{array}
$$

5) Design an H-Bridge cable of running a DC servo motor forward (+10 V), reverse (-10 V) and stop (0 V). Assume the DC servo motor draws $200 \mathrm{~mA} @ 10 \mathrm{~V}$.

Drop the base resistors so that

$$
\begin{aligned}
& \beta I_{b}>I_{c}=164 m A \\
& I_{b}>164 \mu A
\end{aligned}
$$

Let $\mathrm{Ib}=1 \mathrm{~mA}$

$$
R_{b}=\left(\frac{10 \mathrm{~V}-1.4 V}{1 m A}\right)=8.6 \mathrm{k} \Omega
$$

6) Check your design for problem \#2 in PartSim (or similar program)

	V 4	V 5
Calculated	9.1 V	0.9 V
Simulated	9.130 V	0.8159 V

7) Lab: Build your circuit in lab and verify it works for all three states (forward, reverse, stop).

- note: Check Vce. If it's 0.9 V , the transistor is saturated (on)

