ECE 320 - Homework \#6

DC to DC Converters, Schmitt Triggers, Fourier Transforms. Due Monday, February 24th

DC to DC Converters

1) Determine the voltages (both DC and AC) for V1 and V2.

V1
(DC) $\quad V_{1}=0.4 \cdot 20 V+0.6 \cdot(-0.7 V)=7.58 V$
(AC) $\quad V_{1}=20.7 V_{p p}$

V2:
(DC) $V_{2}=\left(\frac{100}{100+15}\right) 7.58 \mathrm{~V}=6.59 \mathrm{~V}$
(AC) $\quad V_{2}=\left(\frac{9.19-j 28.98}{(9.19-j 28.98)+(15+j 502.4)}\right) \cdot 20.7 V_{p p}$

$$
V_{2}=1.32 V_{p p}
$$

2) Simulate this circuit in CircuitLab and determine the voltages at V1 and V2 (both DC and AC)

	V1		V2	
	DC	AC	DC	AC
Calculated	7.58 V	20.7 Vpp	6.59 V	1.32 Vpp
Simluated	9.65 V	20.7 Vpp	6.285 V	1.569 Vpp

3) Change the duty cycle and C so that

- The DC voltage at $\mathrm{V} 2=5.00 \mathrm{~V}$
- The ripple at V2 is 100 mV pp

The voltage at V1 should be

$$
\begin{aligned}
& V_{2}=5.00 \mathrm{~V}=\left(\frac{100}{100+15}\right) V_{1} \\
& V_{1}=5.75 \mathrm{~V}
\end{aligned}
$$

The duty cycle should then be

$$
\alpha=\left(\frac{5.75+0.7}{20+0.7}\right)=0.31159
$$

Make the duty cycle 31.16\%

For a 100 mVpp ripple
Without C2, the ripple is

$$
\begin{aligned}
& V_{2}=\left(\frac{100}{100+(15+j 502.4)}\right) \cdot 20.7 V_{p p} \\
& V_{2}=4.016 V_{p p}
\end{aligned}
$$

For a ripple of 100 mVpp ,
The ripple needs to be $40.16 x$ smaller
$\mathrm{Zc}=40.16$ times smaller than 100 Ohms

$$
\begin{aligned}
& \left|\frac{1}{j \omega C_{2}}\right|=\left(\frac{1}{40.16}\right) 100 \Omega=2.49 \Omega \\
& C_{2}=63.94 \mu F
\end{aligned}
$$

Schmitt Triggers

4) A thermistor has the following resistance vs. temperature relationship

$$
R=1000 \cdot \exp \left(\frac{3905}{T}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees Kelvin (Celsius + 273). Design a circuit which outputs

- +10 V when $\mathrm{T}>5 \mathrm{C}$
- 0 V when $\mathrm{T}<0 \mathrm{C}$
- No change for $0 \mathrm{C}<\mathrm{T}<5 \mathrm{C}$

Assume a 2 k resistor for a voltage divider.
At 5C (on)

- $\mathrm{R}=2567$ Ohms
- $\mathrm{Va}=5.62 \mathrm{~V}$

At 0C (off)

- $\mathrm{R}=3320$ Ohms
- $\mathrm{Va}=6.24 \mathrm{~V}$

The output increases as Va decreases. Connect to the minus input.
When the output is 0 V , you switch at 5.62 V . Make the offset 5.62 V .
The gain is

$$
\text { gain }=\left(\frac{\text { change in output }}{\text { change in input }}\right)=\left(\frac{10 \mathrm{~V}-0 \mathrm{~V}}{6.24 \mathrm{~V}-5.62 V}\right)=16.13
$$

Pick the resistors to be in a 16.13 : 1 ratio

Checking in simulation, V1 turns on and off at

	Calculated	Simulated
On Voltage	5.62 V	5.597 V
Off Voltage	6.24 V	6.246 V

5) Design a circuit which turns on and off a DC motor based upon temperature

- The motor turns on when $\mathrm{T}>5 \mathrm{C}$
- The motor turns off when $\mathrm{T}<0 \mathrm{C}$
- No change for 0C $<\mathrm{T}<5 \mathrm{C}$

Assume the motor draws $400 \mathrm{~mA} @ 10 \mathrm{~V}$ when on.

Use the previous circuit and add a transistor as a switch. To make sure the transistor saturates

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& I_{b}>\frac{I_{c}}{\beta}=\frac{400 \mathrm{~mA}}{1000}=400 \mu \mathrm{~A}
\end{aligned}
$$

Let $\mathrm{Ib}=1 \mathrm{~mA}$

$$
R_{b}=\left(\frac{10 \mathrm{~V}-1.4 V}{1 \mathrm{~mA}}\right)=8.6 \mathrm{k} \Omega
$$

6) (Lab): Build the circuit you designed for problem \#5.

		Calculated	Simulated
Motor On	Vb	1.40 V	1.5940 V
	Vc	0.90 V	0.8637 V
	Vb	0 V	432 uV
	Vc	10 V	10.00 V

Fourier Transforms

The voltage V1 in problem \#1 is a 40% duty cycle square wave

$$
\begin{aligned}
& V_{1}(t)=V_{1}(t+1 \mathrm{~ms}) \\
& V_{1}(t)=\left\{\begin{array}{lc}
+20 \mathrm{~V} & \mathrm{~V} \text { is periodic in } 1 \mathrm{~ms}-\text { i.e. it's a } 1 \mathrm{kHz} \text { square wave } \\
-0.7 \mathrm{~V} & 400 \mu \mathrm{~s}<t<400 \mu \mathrm{~s}
\end{array}\right. \\
&
\end{aligned}
$$

7) Determine the first five terms for the Fourier transform for V1(t)
```
    V
t = [0:0.0001:1]';
V1 = 20*(t<0.4) - 0.7*(t>=0.4);
t = t * 2*pi;
a0 = mean(V1)
    a0 = 7.5791721
a1 = 2*mean(V1 .* exp(-j*t))
    a1 = 3.8761426 - 11.917231i
a2 = 2*mean(V1 .* exp(-j*2*t))
    a2 = -3.1316587 - 2.2781891i
plot(t,V1,'b',t,real(a0 + a1*exp(j*t) + a2*exp(j*2*t)),'r');
```


8) Determine V2(t) at each frequency

- DC
- 1 kHz
- 2 kHz

$$
C=5 e-6 ;
$$

L = 0.08;
w = 0;
Zrc $=1 /\left(j * w^{*} C+1 / 100\right)$
Zrc $=100$.
$y 0=\operatorname{Zrc} /\left(\operatorname{Zrc}+15+j^{*} W^{*} L\right)^{*} a 0$

```
y0 = 6.5905844
```

w = 2*pi*1000;
Zrc $=1 /\left(j * w^{*} C+1 / 100\right)$

$$
\text { Zrc }=9.1999668-28.902548 i
$$

$y 1=\operatorname{Zrc} /\left(\operatorname{Zrc}+15+j * w^{*} L\right) * a 1$
$y 1=-0.4998887+0.6262359 i$
w = 2*pi*2000;
Zrc $=1 /\left(j * w^{*} C+1 / 100\right)$
$\operatorname{Zrc}=2.4704523-15.52231 i$
$y 2=\operatorname{Zrc} /\left(\operatorname{Zrc}+15+j * w^{*} L\right) * a 2$
$y 2=0.0426440+0.0442968 i$
plot(t, real(y0 + y1*exp(j*t) + y2*exp(j*2*t)), 'r');

9) How do your answers for problem \#1 and problem \#8 compare?

	Problem \#1 calcualted	Problem \#2 simulated	Problem \#8
$\mathrm{V} 2(\mathrm{DC})$	6.59 V	6.428 V	6.590 V
V 2 1 kHz term	1.32 Vpp	1.569 V	1.602 Vpp
V 2 2 kHz term	0 Vpp		0.123 Vpp

note: The 1 kHz term is V1pp for problem \#1. This is related to problem \#8 as

$$
2\left|a_{1}-j b_{1}\right|=V_{p p} \quad \text { at } 1 \mathrm{kHz}
$$

The 2 kHz term is V1pp for problem \#1 is 0 Vpp (we ignored it). This is related to problem \#8 as

$$
2\left|a_{2}-j b_{2}\right|=V_{p p} \quad \text { at } 2 \mathrm{kHz}
$$

```
V2 = real(y0 + y1*exp(j*t) + y2*exp(j*2*t));
```

```
mean(V2)
    ans = 6.5905387
```

$\max (\mathrm{V} 2)-\min (\mathrm{V} 2)$
ans $=1.6079241$

