ECE 320 - Homework \#7

DC to AC, SCR, Boolean Logic. Due Monday, March 2nd

DC to AC

1) Determine the efficiency of the following DC to AC converter (i.e. how much of the energy is in the 1st harmonic?). (on for $10 \mathrm{~ms}(+20 \mathrm{~V})$, off for 20 ms , on for $10 \mathrm{~ms}(-20 \mathrm{~V})$, off for 20 ms , repeat)

```
t = [0:0.001:6]';
V = 20*(t<1) - 20*(t>3).*(t<4);
T = 6;
a1 = 2*mean(V .* exp(-j*2*pi*t/T))
    a1 = 11.021407 - 6.3593637i
Pin = mean(V.^2);
    Pin = 133.24446
Pout = 0.5 * abs(a1)^2
    Pout = 80.956456
eff = Pout / Pin
    eff = 0.6075784
plot(t,V,t,real(a1 * exp(j*2*pi*t/T)))
```


2) Determine the efficiency of the following DC to AC converter (i.e. how much of the energy is in the 1st harmonic?).


```
t = [0:0.01:1]';
V1 = 40*t-20;
V2 = 0*t + 20;
V3 = 20 - 40*t;
V4 = 0*t - 20;
V = [V1;V2;V3;V4];
t = [1:length(V)]' / length(V) * 2 * pi;
a1 = 2*mean(V .* exp(-j*t))
    a1 = - 16.371853 - 16.119191i
Pin = mean(V.^2)
    Pin = 268.
```

Pout $=0.5$ * abs(a1)^2
Pout $=263.93294$
eff = Pout / Pin
eff $=0.9848244$
plot(t, V,t,real(a1 * $\left.\left.\exp \left(j^{*} t\right)\right)\right)$

SCR

3) Assume a firing angle of 75 degrees. Determine the voltage at V1 and V2 (both DC and AC).

DC:

$$
\begin{aligned}
& V_{1}=\left(\frac{1+\cos \left(75^{0}\right)}{\pi}\right) \cdot 19.3-0.7=7.033 V \\
& V_{2}=\left(\frac{50}{50+5}\right) V_{1}=6.394 V
\end{aligned}
$$

AC:

$$
\begin{aligned}
& V_{1}=19.3 V_{p p} \\
& V_{2}=\left(\frac{(10.981-j 20.7)}{(10.981-j 20.7)+(5+j 226.2)}\right) \cdot 19.3 V_{p p} \\
& V_{2}=2.194 V_{p p}
\end{aligned}
$$

If you simulate this circuit

```
mean(V2)
```

6.3979185
$\max (\mathrm{V} 2)-\min (\mathrm{V} 2)$
2.3713101

4) Change this circuit so that

- The voltge at V2 is 7.50 V (DC)
- With a ripple of 0.4 Vpp

$$
\begin{aligned}
& V_{1}=\left(\frac{50+5}{50}\right) V_{2}=8.25 \mathrm{~V} \\
& V_{1}=\left(\frac{1+\cos (\theta)}{\pi}\right) \cdot 19.3-0.7=8.25 \mathrm{~V} \\
& \theta=62.816^{0}
\end{aligned}
$$

The current ripple is 2.194 Vpp with $\mathrm{C}=50 \mathrm{uF}$. To make the ripple 0.4 Vpp

$$
\begin{aligned}
& C=\left(\frac{2.194 V_{p p}}{0.4 V_{p p}}\right) \cdot 50 \mu F \\
& C=274 \mu F
\end{aligned}
$$

This results in

```
mean(V2)
    ans = 7.5102431
max(V2) - min(V2)
    ans = 0.4595707
```


matlab code to simulate:

```
t = [0:0.001:1]';
V1 = 0*t;
IL = 0*V1;
VC = 0*V1;
dt = (1/120) / length(t);
L = 0.3;
C = 274e-6;
for n=1:20
    IL(1) = IL(1001);
    VC(1) = VC(1001);
    for i=1:1000
        theta = i/1000 * 180;
        if(theta < 62.816)
            V1(i) = -0.7;
        else
            V1(i) = 19.3*sin(theta*pi/180) - 0.7;
        end
        dIL = V1(i) - 5*IL(i) - VC(i);
        dVC = IL(i) - VC(i)/50;
        IL(i+1) = IL(i) + dIL*dt/L;
        VC(i+1) = VC(i) + dVC*dt/C;
        end
    plot(t,V1, t, VC);
    end
```


The differential equations this circuit satisfies are:

$$
\begin{aligned}
& V_{L}=L \frac{d I_{L}}{d t}=V_{1}-5 I_{L}-V_{c} \\
& I_{c}=C \frac{d V_{c}}{d t}=I_{L}-\frac{V_{c}}{50}
\end{aligned}
$$

Boolean Logic:

5) Implement the following funciton using NAND gates (i.e. circle the ones)

$d(A, B, C, D)$	$C D$					
			00	01	11	10
$A B$	00	1	0	1	1	
	01	0	1	0	1	
	11	x	x	x	x	
	10	1	0	x	x	

$$
Y=B^{\prime} D^{\prime}+B^{\prime} C+C D^{\prime}+B C D^{\prime}
$$

6) Implement the following function using NOR gates (i.e. circle the zeros)

$\mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$	CD					
			00	01	11	10
$A B$	00	1	0	1	1	
	01	0	1	0	1	
	11	x	x	x	x	
	10	1	0	x	x	

	00	01	CD 11	10
00	1	0	1	1
01		1	0	1
		X	(x)	X
10	1		X	X

$$
Y^{\prime}=B C^{\prime} D^{\prime}+B^{\prime} C^{\prime} D+B C D
$$

Use DeMorgan's theorum

$$
Y=\left(B^{\prime}+C+D\right)\left(B+C+D^{\prime}\right)\left(B^{\prime}+C^{\prime}+D^{\prime}\right)
$$

