ECE 320 - Homework \#9

MOSFET Switches, CMOS logic. Due Monday, March 23rd

MOSFET Switch

The characteristics for a MOSFET are

- Part: AOI4286
- Current $-100 \mathrm{~V}, 4 \mathrm{~A}$ continuous. 35 W
- Rds On (Max) @ Id, Vgs 68 mOhm @ 5A, 10V
- Vgs(th) (Max) @ Id 2.9V @ $250 \mu \mathrm{~A}$

1) Determine the transconductance gain, kn

Ohmic region so

$$
\begin{aligned}
& I_{d s s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}=5 A \cdot 68 m \Omega=0.34 V \\
& 5 A=k_{n}\left(10 V-2.9 V-\frac{0.34 V}{2}\right) 0.34 V
\end{aligned}
$$

$$
k_{n}=2.122 \frac{A}{V^{2}}
$$

2) Determine the voltages for the following circuit for

Vin $=\mathrm{Vg}=0 \mathrm{~V}:$ Off Region

$$
\begin{aligned}
& I_{d s}=0 \\
& V_{d s}=20 \mathrm{~V}
\end{aligned}
$$

Vin $=\mathrm{Vg}=5 \mathrm{~V}:$ Saturated Region (guess)

$$
\begin{aligned}
& I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2} \\
& I_{d s}=\frac{2.122}{2}(5-2.9)^{2} \\
& I_{d s}=4.679 \mathrm{~A}
\end{aligned}
$$

which is more than is possible. Guess Ohmic

$$
\begin{aligned}
& I_{d s}=2.122\left(5-2.9-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}+10 I_{d s}=20
\end{aligned}
$$

Solving

$$
\begin{aligned}
& V_{d s}=0.496 \mathrm{~V}, \\
& I_{d s}=1.950 \mathrm{~A}, \\
& R_{d s}=\frac{V_{d s}}{I}=0.254 \Omega
\end{aligned}
$$

Vin $=\mathrm{Vg}=10 \mathrm{~V}$ (assume ohmic)

$$
\begin{aligned}
& I_{d s}=2.122\left(10-2.9-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}+10 I_{d s}=20
\end{aligned}
$$

Solving

$$
\begin{aligned}
& V_{d s}=0.133 \mathrm{~V} \\
& I_{d s}=1.987 \mathrm{~A} \\
& R_{d s}=\frac{V_{d s}}{I_{d s}}=0.067 \Omega
\end{aligned}
$$

3) Design a circuit using this MOSFET to turn on and off a DC servo motor. Assume the DC motor draws 200mA @ 10V.

No change - just use the previous circuit.
MOSFET's make pretty versitile switches.

CMOS Logic

4) Design a CMOS gate to implement the function: $d(A, B, C, D)$

$\mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$	CD				
	00	01	11	10	
AB	00	1	0	1	1
	01	0	1	0	1
	11	x	x	x	x
	10	1	0	x	x

Circle the zeros (only takes 3 terms)

	00		CD		
	00	1	0	1	1
	01	0	1	0	1
	11	x	x	x	
10	1	0	x	x	

$$
\begin{aligned}
& \bar{d}=B \bar{C} \bar{D}+\bar{B} \bar{C} D+B C D \\
& d=(\bar{B}+C+D)(B+C+\bar{D})(\bar{B}+\bar{C}+\bar{D})
\end{aligned}
$$

Using CMOS logic

