ECE 320 - Homework \#2

Semiconductors, PN Junction. Due Monday, Jan 25th
Please make the subject "ECE $320 \mathrm{HW} \mathrm{H}^{2}$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Semiconductors

1) Why does the resistance of silicon decrease as temperature goes up?
2) What doping of Boron (p-type) do you need to make an 1206 resistor have a resistance of 7500 Ohms? The dimensions of an 1206 resistor are

$$
\mathrm{L}=3.20 \mathrm{~mm}, \mathrm{~W}=1.60 \mathrm{~mm}, \mathrm{H}=0.95 \mathrm{~mm}
$$

3) A thermistor has the following resistance - voltage relationship

$$
R=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees C . What is the resistance you'll read at

- -70C Dry ice
- 0C Freezing point of water
- +650 F Temperature of a soldering iron

PN Junction

4) Why can current flow p to n but not n to p ?

Diode VI Characteristics

Assume the VI characteristics for a diode are

$$
V_{d}=0.052 \cdot \ln \left(\frac{I_{d}}{10^{-8}}+1\right) \quad I_{d}=10^{-8}\left(\exp \left(\frac{V_{d}}{0.052}\right)-1\right)
$$

5) For the 1-diode circuit next page)

- 5a) Draw the load-line for the following circuit (next page). Determine Vd and Id from the graph.
- 5b) Write the voltage node equations and solve for Vd and Id assuming the VI equations above
- 5c) Write the voltage node equations and solve for Vd and Id assuming ideal diodes ($\mathrm{Vf}=0.7 \mathrm{~V}$)

6) Build this circuit in CircuitLab and solve for Vd and Id. (Use a 1 N 4004 diode)
7) Build this curcuit on your breadboard and measure Vd. From this, compute Id

	Vd	Id
5a) Graphical solution		
5b) Numeric Solution		
5c) Ideal Diode Solution	Week \#3	Week \#3
6) Simulation (CircuitLab)		
7) Lab (experimental)		

Problem 8-10: For the following circuit...
8) Write the voltage node equations assuming nonlinear diodes. Solve for $\{\mathrm{V} 1, \mathrm{~V} 2$, and V3\} using Matlab.
9) Simulate this circuit in CircuitLab. From this, determine $\{$ V1, V2, and V3\}
10) Build this circuit with your breadboard and measure $\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3\}$

	V1	V2	V3
8a) Numeric Solution			
8b) Ideal Diode Solution	next week	next week	next week
9) Simulation (CircuitLab)			
10) Lab (experimental)			

Problem 8-10

