ECE 320-Quiz \#1 - Name

EE 206 Review. January 21, 2021
Open book, open notes. Calculators permitted. Individual Effort.

1) Let R be your birthday

$$
\mathrm{R}=1000+(\text { month }) * 100+(\text { day })
$$

For example, May 14th would give $\mathrm{R}=1514$ Ohms
Determine the resistance Rab

R	Rab
$1000+100 *$ month + day	$\mathbf{9 9 4 . 5 2 7}$
1514	depends upon R

2) Let R be your birthday

$$
\mathrm{R}=1000+\text { (month)* } 100+\text { (day) }
$$

For example, May 14th would give $\mathrm{R}=1514$ Ohms
Determine the resistace Rab (it will be a complex number)

R	Zab
$1000+100 *$ month + day	$1588.04+\mathbf{j 4 4 3 . 8 0}$ depends upon R
1514	varies with each quiz

3) Voltage Nodes. Let R be your birthday

$$
\mathrm{R}=1000+(\text { month }) * 100+(\text { day })
$$

For example, May 14th would give $\mathrm{R}=1514$ Ohms
Give 5 equations to solve for the 5 unknown voltages. (you don't need to solve)

$R=1514$
$V_{2}=10$
$V_{3}-V_{4}=5$
$\left(\frac{V_{1}}{200}\right)+\left(\frac{V_{1}-V_{2}}{100}\right)+\left(\frac{V_{1}-V_{3}}{50}\right)=0$
$\left(\frac{V_{5}}{400}\right)+\left(\frac{V_{5}-V_{4}}{300}\right)+\left(\frac{V_{5}-V_{3}}{150}\right)=0$
$\left(\frac{V_{3}-V_{2}}{R}\right)+\left(\frac{V_{3}-V_{1}}{50}\right)-20 m A+\left(\frac{V_{5}}{400}\right)=0$
4) Current Loops. Let R be your birthday

$$
\mathrm{R}=1000+\text { (month) } * 100+\text { (day })
$$

For example, May 14th would give $\mathrm{R}=1514$ Ohms
Give 5 equations to solve for the 5 unknown currents

$\mathrm{R}=1514$
$I_{5}-I_{4}=20 \mathrm{~mA}$
$50 I_{1}+R\left(I_{1}-I_{4}\right)+100\left(I_{1}-I_{3}\right)=0$
$150 I_{2}+300\left(I_{2}-I_{5}\right)-5=0$
$200 I_{3}+100\left(I_{3}-I_{1}\right)+10=0$
$200 I_{3}+50 I_{1}+150 I_{2}+400 I_{5}=0$
5) Signals X and Y are displayed on an oscilloscope. Give the phasor representation for these two voltages

Frequency (Hzz)	X		Y	
	Amplitude	Phase	Amplitude	Phase
$\mathbf{1 1 1 ~ H z}$	$\mathbf{3 . 8 V}$	$\mathbf{- 1 5 6 ~ d e g}$	$\mathbf{1 . 7 V}$	$\mathbf{- 2 0 ~ d e g}$

Period $=9 \mathrm{~ms}$
frequency $=1 /$ period $=111 \mathrm{~Hz}$
$\theta_{x}=-\left(\frac{3.9 \mathrm{~ms} \text { delay to peak }}{9 \mathrm{~ms} \text { period }}\right) 360^{0}=-156^{0}$
$\theta_{y}=-\left(\frac{0.5 \mathrm{~ms} \text { delay to peak }}{9 \mathrm{~ms} \text { period }}\right) 360^{0}=-20^{0}$
6) Let R be your birthday

$$
\mathrm{R}=1000+(\text { month }) * 100+(\text { day })
$$

For example, May 14th would give $\mathrm{R}=1514$ Ohms
Determine V2(t) assuming
$V_{1}(t)=12+5 \cos (1000 t)+2 \sin (1000 t)$

$R=$	1514 Ohms
$V 2(t)=11.26+4.81 \cos (1000 t)+3.60 \sin (1000 t)$	

DC:

$$
V_{2}=\left(\frac{1514}{1514+100}\right) 12 \mathrm{~V}=11.26 \mathrm{~V}
$$

AC:

$$
\begin{aligned}
& L \rightarrow j \omega L=j 200 \\
& C \rightarrow \frac{1}{j \omega C}=-j 1000 \\
& R \| C=459.88-j 696.25 \\
& V_{2}=\left(\frac{(459.88-j 696.25)}{(459.88-j 696.25)+(100+j 200)}\right)(5-j 2) \\
& V_{2}=4.81-j 3.60
\end{aligned}
$$

