ECE 320-Quiz \#3 - Name

Ideal Diodes, LEDs, AC to DC Converters - Spring 2021

1) Determine the voltages and currents for the following circuit. Assume

- Ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$.
- R is $1000+100 *$ (your birth month) + (your birthday). For example, May $14=1514$ Ohms)

V 1	V 2	V 3	Id 1	Id 2	Id 3
2.1 V	1.4 V	0.7 V	1.018 mA	1.718 mA	3.118 mA

To find Id1, do a voltage node equation at V1
Current In = Current Out

$$
\begin{aligned}
& \left(\frac{10 V-2.1 V}{1514}\right)=I_{d 1}+\left(\frac{2.1 V-1.4 V}{1000}\right)+\left(\frac{2.1 V-0.7 V}{1000}\right)+\left(\frac{2.1 V}{1000}\right) \\
& 5.218 m A=I_{d 1}+0.7 m A+1.4 m A+2.1 m A \\
& I_{d 1}=1.018 m A
\end{aligned}
$$

At node V2,
Current $\operatorname{In}=$ Current Out
$\mathrm{Id} 2=\mathrm{Id} 1+0.7 \mathrm{~mA}$
At node V3,
Current In = Current Out
$\mathrm{Id} 3=\mathrm{Id} 2+1.4 \mathrm{~mA}$
2) Determine the voltages and currents for the following circuit. Assume

- Ideal red diodes $(\mathrm{Vf}=1.9 \mathrm{~V})$.
- R is $1000+100^{*}($ your birth month $)+($ your birthday $)$. For example, May $\left.14=1514 \mathrm{Ohms}\right)$

V 1 V	V 2	V 3	Id 1	Id 2	I 33
3.198 V	3.197 V	1.9 V	0	0	1.297 mA

Assume diode \#1 is off

$$
\left(\frac{10-V_{1}}{1514}\right)=\left(\frac{V_{1}-3.8}{1000}\right)+\left(\frac{V_{1}-1.9}{1000}\right)+\left(\frac{V_{1}}{1000}\right)
$$

$V_{1}=3.362 \mathrm{~V}$
can't be: V1 must be greater than 3.8 V for diode \#2 to be on
Assume diode \#1 and \#2 are off

$$
\begin{aligned}
& \left(\frac{10-V_{1}}{1514}\right)=\left(\frac{V_{1}-1.9}{1000}\right)+\left(\frac{V_{1}}{1000}\right) \\
& V_{1}=3.197 V
\end{aligned}
$$

3) A red and green LED are connected to a 10 V source. Determine the current and brighness of each LED. Assume

- R is $1000+100^{*}($ your birth month $)+$ (your birthday). For example, May $14=1514$ Ohms)
- Red LED: $\quad \mathrm{Vf}=1.9 \mathrm{~V}$ @ 20mA, 3,000mcd @ 20mA
- Green LED: $\quad \mathrm{Vf}=3.0 \mathrm{~V} @ 20 \mathrm{~mA}, 3,000 \mathrm{mcd} @ 20 \mathrm{~mA}$

R	Red LED		Green LED	
	Ir	mcd(red)	Ig	mcd(green)
1514	4.022 mA	603.3	2.784 mA	417.7

$$
\begin{array}{ll}
I_{r}=\left(\frac{10 \mathrm{~V}-1.9 \mathrm{~V}}{R+500}\right)=4.022 \mathrm{~mA} & I_{g}=\left(\frac{10 \mathrm{~V}-3.0 \mathrm{~V}}{R+1000}\right)=2.784 \mathrm{~mA} \\
\left(\frac{4.022 \mathrm{~mA}}{20 \mathrm{~mA}}\right) 3000 \mathrm{mcd}=603.3 \mathrm{mcd} & \left(\frac{2.784 \mathrm{~mA}}{20 \mathrm{~mA}}\right) 3000 \mathrm{mcd}=417.7 \mathrm{mcd}
\end{array}
$$

4) The following waveforms are found using CircuitLab for V1 for an AC to DC converter. Determine the following

Frequency (Hz)	V1 (blue waveform)	
	DC (average)	AC (Vpp)
270 Hz	18.78 V	$\mathbf{4 9 0 m V p p}$

Period $=(56.3 \mathrm{~ms})-(52.6 \mathrm{~ms})=3.7 \mathrm{~ms}$
freq $=1 /$ Period $=270 \mathrm{~Hz}$
$\max =19.02 \mathrm{~V}$
$\min =18.53 \mathrm{~V}$
$\mathrm{DC}=(\max +\min) / 2=18.78 \mathrm{~V}$
$\mathrm{AC}=(\max -\min)=0.490 \mathrm{Vpp}$
5) Determine the voltages V1 and V2 (both DC and AC). Assume

- Ideal silicon didoes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- R is $1000+100^{*}($ your birth month $)+($ your birthday $)$. For example, May $\left.14=1514 \mathrm{Ohms}\right)$

V 1		V 2	
$\mathrm{DC}(\operatorname{mean}(\mathrm{V} 1))$	$\mathrm{AC}(\mathrm{V} 1 \mathrm{pp})$	$\mathrm{DC}(\operatorname{mean}(\mathrm{V} 2))$	$\mathrm{AC}(\mathrm{V} 2 \mathrm{pp})$
$\mathbf{1 9 . 2 1 V}$	$\mathbf{1 7 9 m V p p}$	$\mathbf{1 6 . 2 4 V}$	$\mathbf{2 . 5 1 9 m p p p}$

all answers cary with R

$$
\begin{aligned}
& \max (\mathrm{V} 1)=19.3 \mathrm{~V} \\
& I \approx\left(\frac{19.3 V}{1514+277}\right)=10.78 m A \\
& I=C \frac{d V}{d t} \\
& 10.78 m A=1000 \mu F \frac{d V}{1 / 60 s} \\
& d V=179.6 m V=V 1 p p \\
& V_{1}(D C)=19.3 V-\frac{1}{2} 179 m V=19.21 V \\
& V_{2}(D C)=\left(\frac{1514}{1514+277}\right) \cdot 19.21 V=16.24 V \\
& V_{2}(A C)=\left(\frac{(1.857-j 52.985)}{(1.857-j 52.985)+(277+j 3770)}\right)\left(0.1796 V_{p p}\right) \\
& V_{2}(A C)=2.519 m V_{p p}
\end{aligned}
$$

6) Determine C 1 , and C 2 so that

- The ripple at V 1 is 4 Vpp and
- The ripple at $\mathrm{V} 2=200 \mathrm{mV} p \mathrm{p}$

Let R be $1000+100 *$ (your birth month) + (your birthday). For example, May $14=1514$ Ohms)

R	C 1	C 2
$\mathbf{1 5 1 4}$	$\mathbf{4 0 . 2 5 u F}$ varies with R	12.7 uF varies with R

$$
\begin{aligned}
& V_{1}(D C)=19.3 V-\frac{1}{2} \cdot 4 V_{p p}=17.3 V \\
& I=\left(\frac{17.3 V}{1514+277}\right)=9.6594 m A \\
& I=C_{1} \frac{d V}{d t} \\
& 9.6594 m A=C_{1}\left(\frac{4 V}{1 / 60 s}\right) \\
& C_{1}=40.25 \mu F
\end{aligned}
$$

If C2 $=0$

$$
\begin{aligned}
& V_{2}=\left(\frac{1514}{1514+(277+j 3770)}\right) 4 V_{p p}=1.451 V_{p p} \\
& \left|\frac{1}{j \omega C_{2}}\right|=\left(\frac{0.2 V_{p p}}{1.451 V_{p p}}\right) 1514 \Omega=208.7 \Omega \\
& C_{2}=12.7 \mu F
\end{aligned}
$$

