ECE 320-Quiz \#4 - Name

Max/Min, Clipper, Transistors. Spring 2021

1) Max/Min: Determine the voltages and currnets for the following min/max circuit.

- Assume ideal silicon diodes ($\mathrm{Vf}=0.7 \mathrm{~V}$)
- $\mathrm{R}=1000+100$ * Birth Month + Birth Day. May 14th for example gives $\mathrm{R}=1514$ Ohms

R $\mathrm{R}^{1000+10^{2} \mathrm{M}+\mathrm{Day}}$	V 1	V 2	V 3	${ }^{14}$	${ }^{15}$
$\mathbf{1 5 1 4}$	$\mathbf{8 . 6 7 V}$	$\mathbf{9 . 3 7 V}$	8.67 V	0.867 mA	0.867 mA

note: The 10k resistors are too large: the max functions can't accept the current from R and all three diodes turn off (termed loading)

1) Max/Min: Determine the voltages and currnets for the following min/max circuit.

- Assume ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- $\mathrm{R}=1000+100$ * Birth Month + Birth Day. May 14th for example gives $\mathrm{R}=1514$ Ohms
note: Changing the circiot so that R doesn't load the circuit and it behaves like a max/min circuit.

$\underset{\substack{\mathrm{R}}}{\text { deot }}$	V_{1}	V2	${ }^{\text {v3 }}$	${ }^{14}$	15
1514	3.30 V	4.00 V	6.30 V	5.28 mA	0

2) Max/Min: Determine the voltages and currnets for the following min/max circuit.

- Assume ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- $\mathrm{R}=1000+100$ * Birth Month + Birth Day. May 14th for example gives $\mathrm{R}=1514$ Ohms

R $1000+100^{2} \mathrm{M}+\mathrm{Day}$	V 1	V 2	V 3	${ }^{\mathrm{I}} 4$	${ }^{15}$
$\mathbf{1 5 1 4}$	2.7 V	5.0 V	5.7 V	0	3.3 mA

3) Clipper: Determine $\{\mathrm{R} 0, \mathrm{R} 1, \mathrm{R} 2, \mathrm{Vz} 1, \mathrm{Vz} 2\}$ to implement the following function.

- Let R3 be $1000+100$ * your birth month + your birth day. May 14th would give $\mathrm{R}=1514$ Ohms.

$\begin{gathered} \mathrm{R} 3 \\ 1000+100 * \mathrm{Mo}+\text { Day } \end{gathered}$	R0	$\mathrm{V}_{\mathrm{z} 1}$	R1	$\mathrm{V}_{2} 2$	R2
1514	5k	6V	302.8	9V	36

4) Clipper: Design a circuit to clip the voltage at +7 V and -3 V

$$
y=\left\{\begin{array}{cc}
+7 V & x>7 \\
x & -3<x<7 \\
-3 V & x<-3
\end{array}\right.
$$

5) The VI characteristics for an NPN transistor are shown below

- Draw the load line for the following circuit
- Show on the load line the operating point (Vce, Ic) when Vin $=4 \mathrm{~V} \& 8 \mathrm{~V}$.

Assume

- \quad Vbe $=0.7 \mathrm{~V}$
- $\mathrm{Vce}=0.2 \mathrm{~V}$ when saturated

R	Load Line	Vin = 4.0V	Vin = 8.0V
$1000+100^{* M o}+$ Day			
$\mathbf{1 5 1 4}$	show on graph	show (Vce, Ic) on graph	show (Vce, Ic) on graph

Vin $=4.0 \mathrm{~V}$

$$
I_{b}=\left(\frac{4 V-0.7 V}{1514}\right)=2.18 m A
$$

Vin $=8.0 \mathrm{~V}$

$$
I_{b}=\left(\frac{8 V-0.7 V}{1514}\right)=4.82 m A
$$

6) The voltages for the following circuit are measured (shown below). From these measurements, determine the following:

$\frac{\mathrm{R}}{1000+100 * \mathrm{Mo}+\text { Day }}$	$\mathrm{Ib}(\mathrm{mA})$	Ic (mA)	Current Gain (beta)	Operating Region off / active / saturated
1514	2.85mA varies with R	$118.8 m A$	41.69 varies	active $\text { Vce }>0.2 \mathrm{~V}$

