ECE 320-Quiz \#5 - Name

555 Timers, Transistor Switch, Comparitors, Schmitt Triggers - February 19, 2021

1) 555 Timers. Determine R1, R2, and C so that the 555 timer outputs a 5% duty cycle 50 Hz square wave:

$$
\begin{aligned}
& t_{o n}=R_{1} \cdot C \cdot \ln (2.58)=1.0 \mathrm{~ms} \\
& t_{o f f}=R_{2} \cdot C \cdot \ln (2)=19.0 \mathrm{~ms}
\end{aligned}
$$

Let R1 be your birthday day ($1000+100 *$ Month + Day. May 14th would be 1514 Ohms)

R1 $1000+100^{*}$ Month + Day	R2	C
1514	39.33 K	$697 n F$

$$
\begin{aligned}
& t_{o n}=1514 \Omega \cdot C \cdot \ln (2.58)=1.0 \mathrm{~ms} \\
& C=697 n F \\
& t_{o f f}=R_{2} \cdot 697 n F \cdot \ln (2)=19.0 \mathrm{~ms} \\
& R_{2}=39.33 \mathrm{k} \Omega
\end{aligned}
$$

2) Transistor Switch: Design. Specify R1 and R2 so that when Vin $=5.00 \mathrm{~V}$,

- Ic $=(1000+100 *$ Birth Month + Birth Day $) \mathrm{mA}$. May 14th would be $1514 \mathrm{~mA}(1.514 \mathrm{~A})$
- The transistor is saturated, and
- $\mathrm{Ib}<25 \mathrm{~mA}$ (the maximum output of a 555 timer)

Assume 6144 transistors

- | Vbe I = 0.7 V
- | Vce $\mid=0.36 \mathrm{~V}$ when saturated
- $\beta=200$

	Rc	min value of Pb	value of Rb
1514 mA	3.065 Ohms	172 Ohms	568 Ohms

$R_{c}=\left(\frac{5 V-0.36 V}{1514 m A}\right)=3.065 \Omega$
$\beta I_{b}>I_{c}=1514 m A$
$25 m A>I_{b}>\frac{1514 m A}{200}=7.57 m A$
$\left(\frac{5 V-0.7 V}{25 m A}\right)<R_{b}<\left(\frac{5 V-0.7 V}{7.57 m A}\right)$
$172 \Omega<R_{b}<568 \Omega$

3) Darlington Pair (analysis). Assume two 6144 NPN transistors are connected as a Darlington pair.

- $\quad \mid$ Vbe $I=0.7 \mathrm{~V}$
- \mid Vce $\mid=0.36 \mathrm{~V}$ when saturated
- $\beta=200$

Let Rb be $1000+100$ (Birth Month) + Birth Day. (May $14=1514$ Ohms). Find the currents and voltages.

Rb $1000+100 * \mathrm{Mo}+$ Day	${ }^{\mathrm{II}}$	${ }^{\mathrm{I} 2}$	${ }^{\mathrm{I} 3}$
1514 Ohms	$\mathbf{2 . 3 7 8 \mathrm { mA }}$	5.574 mA	1.115 A
	V 1	V 2	V 3
	1.4 V	0.7 V	1.06 V

Transistor T1 is saturated
Transistor T 2 is active $(\mathrm{I} 3=200 \mathrm{I} 2)$

$$
\begin{aligned}
& I_{1}=\left(\frac{5-1.4}{1514}\right)=2.378 m A \\
& I_{5}=I_{3}+I_{4}=\left(\frac{10 \mathrm{~V}-1.06 \mathrm{~V}}{8 \Omega}\right)=1.118 \mathrm{~A} \\
& I_{2}=I_{1}+I_{4} \\
& I_{3}=200 I_{2}
\end{aligned}
$$

Four equations and four unknowns

4) Comparitor: Design a circuit which output

- 0V when $\mathrm{R}>\mathrm{X}$ Ohms
- 5 V when $\mathrm{R}<\mathrm{X}$ Ohms
where X is $1000+10 *($ Birth Month $)+($ Birth Day $)$.

5) Schmitt Trigger: Design a circuit which output

- 5V when $\mathrm{R}<\mathrm{X}$ Ohms
- 0V when $\mathrm{R}>\mathrm{X}+200$ Ohms
- No change for $\mathrm{X}<\mathrm{R}<\mathrm{X}+200$ Ohms

Let X be $1000+10($ Birth Month $)+($ Birth Date $)$.
$X=1514$ Ohms
$\mathrm{R}=1514$ Ohms

- $\mathrm{V} 1=2.500 \mathrm{~V}$
- $Y=5 \mathrm{~V}$
$\mathrm{R}=1714$ Ohms
- $\mathrm{V} 1=2.655 \mathrm{~V}$
- $Y=0 V$

Connect to the minus input (Y goes down when V1 goes up)
Make the offset 2.500 V (Y goes high when V1 is 2.500 V)
Make the gain $\left(\frac{5 \mathrm{~V}-0 \mathrm{~V}}{2.655 \mathrm{~V}-2.500 \mathrm{~V}}\right)=32.38$

6) Schmitt Trigger: Analysis. Determine the voltages and resistance where the following Schmitt trigger turns on and off. Assume Rx is $1000+100 *$ (Birth Month $)+($ Birth Day $)$. May 14th gives Rx $=1514$ Ohms.

${ }^{\mathrm{R} \times}$	On ($\mathrm{V} 2=+5 \mathrm{~V})^{\text {a }}$		Off ($\mathrm{V} 2=\mathrm{ov}$)	
1514	v1	R	v1	R
	3.50 V	3533	1.833 V	876

$$
\begin{aligned}
& \text { gain }=3.00=\left(\frac{5 V-0 V}{V_{\text {on }}-V_{\text {off }}}\right) \\
& V_{\text {off }}=3.50 \mathrm{~V}-\left(\frac{5 V}{3}\right)=1.833 V \text { February } 20,2021 \\
& R_{\text {on }}=\left(\frac{3.5 \mathrm{~V}}{5.0 \mathrm{~V}-3.5 \mathrm{~V}}\right) 1514=3533 \Omega \\
& R_{\text {off }}=\left(\frac{1.833 \mathrm{~V}}{5 V-1.833 \mathrm{~V}}\right) 1514=876 \Omega
\end{aligned}
$$

