ECE 320 - Quiz #6 - Name

H Bridges, DC to DC Converters

H-Bridge Analysis:

1) Determine the voltages and currents for the following H-bridge. Assume ideal transistors:

- |Vbe| = 0.7V
- |Vce| = 0.2V
- Current Gain = β = 40

Let $R = 1000 + 100^{*}$ (Birth Month) + Birth Day. May 14th would give R = 1514 Ohms.

Determine the voltages and currents

R	I1	I2	I3	V4	V5
1514	46.5uA	1.86mA	62.0uA	6.98V	9.8V

H-Bridge Analysis:

2) Determine the voltages and currents for the following H-bridge. Assume ideal transistors:

- |Vbe| = 0.7V
- |Vce| = 0.2V
- Current Gain = β = 40

Let $R = 1000 + 100^{\circ}$ (Birth Month) + Birth Day. May 14th would give R = 1514 Ohms.

Determine the voltages and currents

R	I1	I2	I3	V4	V5
1514	465uA	6.341mA	620uA	0.2V	9.8V

DC to DC Converter: (7805)

3) Determine the voltages and currents for the following DC to DC converter with a 6.5V zener diode. Assume

- |Vbe| = 0.7V
- |Vce(sat)| = 0.2V
- Current Gain = β = 40
- $R = 1000 + 100^{*}$ (Birth Month) + Birth Day. May 14th would give R = 1514 Ohms.

The zener diode sets V1 = 6.50V

The diode in the transistor sets V2 = 5.80V

Transistor is in the active region (Vce > 0.2V)

$$I_{c} = 40I_{b}$$

$$I_{c} + I_{b} = 29.0mA$$

$$I_{b} = \frac{29.0mA}{41} = 0.707mA$$

$$I_{3} = 2.312mA - 0.707mA = 1.605mA$$

DC to DC Converter (take 2):

4) The following circuit implements the switch used on a Buck converter. Determine the voltages and currents. Assume

- |Vbe| = 0.7V
- |Vce(sat)| = 0.2V
- Current Gain = β = 40
- $R = 1000 + 100^{\circ}$ (Birth Month) + Birth Day. May 14th would give R = 1514 Ohms.

R	V1	V2	I3	I4	I5
1514	0.2V	19.8V	43uA	955uA	13.08mA
	NPN is saturated	PNP is saturated	4.3V / 100k	19.1V / 20k	19.8V / R

Guess that the transistors are saturated

V1 = 0.2V (NPN is saturated) V2 = 19.8V (PNP is saturated) $I_3 = \frac{5V-0.7V}{100k} = 43.0uA$ allows 1.72mA $I_4 = \frac{20V-0.7V-0.2V}{20k} = 0.955\mu A$ check: 40*13 > 14 allows 38.2mA $I_5 = \frac{19.8V}{1514\Omega} = 13.08mA$ check: 40*14 > 15

DC to DC Converter (take 3)

5) Determine the voltages at V1 and V2 (both DC and AC). Assume

• $R = 1000 + 100^{*}$ (Birth Month) + Birth Day. May 14th would give R = 1514 Ohms.

R	V1		V2	
1514	V1(DC)	V1(AC)	V2(DC)	V2(AC)
	14.83V	20.7Vpp	13.10V	1.782Vpp

 $V_1(DC) = 0.75 \cdot 20V + 0.25 \cdot (-0.7V) = 14.83V$ $V_1(AC) = 20.7V_{pp}$

$$V_2(DC) = \left(\frac{1514}{1514+200}\right) 14.83V$$
$$V_2(DC) = 13.10V$$

$$V_2(AC) = \left(\frac{(165.7 - j462.7)}{(165.7 - j462.7) + (200 + j6280)}\right) 20.7V_{pp}$$
$$V_2(AC) = 1.782V_{pp}$$

DC to DC Converter: Design

6) Determine the duty cycle and C so that

- V2(DC) is 7.50V
- V2(AC) = 1.00Vpp
- $R = 1000 + 100^{\circ}$ (Birth Month) + Birth Day. May 14th would give R = 1514 Ohms.

X% (duty cycle)	C	R	
V2(DC) = 7.50V	V2(AC) = 1.00Vpp	1000 + 100*Mo + Day	
44.40%	509nF	1514	

DC

$$V_1 = \left(\frac{1514+200}{1514}\right)7.5V = 8.49V$$
$$8.49V = X \cdot 20V + (1-X)(-0.7V)$$
$$X = \left(\frac{8.49+0.7}{20+0.7}\right) = 44.40\%$$

C: (method #1) Assume C = 0. The AC voltage at V2 will be

$$V_2 = \left(\frac{1514}{1514 + (200 + j6280)}\right) 20.7 V_{pp} = 4.814 V_{pp}$$

For 1Vpp at V2

$$Z_c = \left| \frac{1}{j\omega C} \right| = \left(\frac{1V_{pp}}{4.814V_{pp}} \right) 1514\Omega = 314.5\Omega$$
$$C = 509nF$$

C: Method #2

$$\left(\frac{(R||C)}{(R||C) + (200 + j6280)}\right) 20.7 V_{pp} = 1 V_{pp}$$

solving using numerical methods (trial and error)

$$C = 539.12 nF$$