ECE 320-Quiz \#6 - Name

H Bridges, DC to DC Converters

H-Bridge Analysis:

1) Determine the voltages and currents for the following H-bridge. Assume ideal transistors:

- \quad Vbel $=0.7 \mathrm{~V}$
- |Vcel $=0.2 \mathrm{~V}$
- Current Gain = $\beta=40$

Let $\mathrm{R}=1000+100 *$ (Birth Month) + Birth Day. May 14th would give $\mathrm{R}=1514$ Ohms.
Determine the voltages and currents

R	I	I 2	I 3	V 4	V 5
1514	46.5 uA	1.86 mA	62.0 uA	6.98 V	9.8 V

H-Bridge Analysis:

2) Determine the voltages and currents for the following H-bridge. Assume ideal transistors:

- \quad IVbel $=0.7 \mathrm{~V}$
- \quad IVcel $=0.2 \mathrm{~V}$
- Current Gain $=\beta=40$

Let $R=1000+100 *($ Birth Month $)+$ Birth Day. May 14th would give $R=1514$ Ohms.
Determine the voltages and currents

R	I1	I2	I3	V4	V5
1514	$465 u A$	6.341 mA	620 uA	0.2 V	9.8 V

DC to DC Converter: (7805)

3) Determine the voltages and currents for the following DC to DC converter with a 6.5 V zener diode. Assume

- \quad Vbel $=0.7 \mathrm{~V}$
- \mid Vce(sat)| $=0.2 \mathrm{~V}$
- Current Gain = $\beta=40$
- $\mathrm{R}=1000+100^{*}$ (Birth Month) + Birth Day. May 14th would give $\mathrm{R}=1514$ Ohms.

R	V 1	V 2	I 3	I 4	I
1514	6.50 V	5.80 V	$\mathbf{1 . 6 0 5 m A}$	0.707 mA	$\mathbf{2 9 . 0 m A}$

The zener diode sets V1 $=6.50 \mathrm{~V}$
The diode in the transistor sets V2 $=5.80 \mathrm{~V}$
Transistor is in the active region (Vce $>0.2 \mathrm{~V}$)

$$
\begin{aligned}
& I_{c}=40 I_{b} \\
& I_{c}+I_{b}=29.0 \mathrm{~mA} \\
& I_{b}=\frac{29.0 \mathrm{~mA}}{41}=0.707 \mathrm{~mA} \\
& I_{3}=2.312 \mathrm{~mA}-0.707 \mathrm{~mA}=1.605 \mathrm{~mA}
\end{aligned}
$$

DC to DC Converter (take 2):

4) The following circuit implements the switch used on a Buck converter. Determine the voltages and currents. Assume

- \quad Vbel $=0.7 \mathrm{~V}$
- \mid Vce(sat) $\mid=0.2 \mathrm{~V}$
- Current Gain = $\beta=40$
- $R=1000+100^{*}($ Birth Month $)+$ Birth Day. May 14th would give $\mathrm{R}=1514$ Ohms.

R	V1	V2	I3	I4	I5
1514	0.2 V NPN is saturated	19.8V PNP is saturated	43uA $4.3 \mathrm{~V} / 100 \mathrm{k}$	955uA 19.1V / 20k	13.08 mA $19.8 \mathrm{~V} / \mathrm{R}$

Guess that the transistors are saturated

$$
\begin{array}{ll}
\mathrm{V} 1=0.2 \mathrm{~V}(\mathrm{NPN} \text { is saturated }) & \\
\mathrm{V} 2=19.8 \mathrm{~V}(\mathrm{PNP} \text { is saturated }) & \\
I_{3}=\frac{5 V-0.7 \mathrm{~V}}{100 \mathrm{k}}=43.0 u A & \text { allows } 1.72 \mathrm{~mA} \\
I_{4}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}-0.2 \mathrm{~V}}{20 k}=0.955 \mu A & \text { check: } 40 * I 3>I 4 \quad \text { allows } 38.2 \mathrm{~mA} \\
I_{5}=\frac{19.8 \mathrm{~V}}{1514 \Omega}=13.08 m A & \text { check: } 40 * I 4>I 5
\end{array}
$$

DC to DC Converter (take 3)

5) Determine the voltages at V1 and V2 (both DC and AC). Assume

- $\mathrm{R}=1000+100 *($ Birth Month $)+$ Birth Day. May 14th would give $\mathrm{R}=1514$ Ohms.

R	$V 1$		V 2	
1514	$V 1(\mathrm{DC})$	$\mathrm{V} 1(\mathrm{AC})$	$\mathrm{V} 2(\mathrm{DC})$	$\mathrm{V}(\mathrm{AC})$
	14.83 V	20.7 Vpp	13.10 V	1.782 Vpp

$$
\begin{aligned}
& V_{1}(D C)=0.75 \cdot 20 \mathrm{~V}+0.25 \cdot(-0.7 \mathrm{~V})=14.83 \mathrm{~V} \\
& V_{1}(A C)=20.7 V_{p p} \\
& V_{2}(D C)=\left(\frac{1514}{1514+200}\right) 14.83 \mathrm{~V} \\
& V_{2}(D C)=13.10 \mathrm{~V} \\
& V_{2}(A C)=\left(\frac{(165.7-j 462.7)}{(165.7-j 462.7)+(200+j 6280)}\right) 20.7 V_{p p} \\
& V_{2}(A C)=1.782 V_{p p}
\end{aligned}
$$

DC to DC Converter: Design

6) Determine the duty cycle and C so that

- $\mathrm{V} 2(\mathrm{DC})$ is 7.50 V
- $\mathrm{V} 2(\mathrm{AC})=1.00 \mathrm{Vpp}$
- $\mathrm{R}=1000+100 *$ (Birth Month $)+$ Birth Day. May 14th would give $\mathrm{R}=1514$ Ohms.

$\mathrm{X} \%$ (duty cycle) $\mathrm{V} 2(\mathrm{DC})=7.50 \mathrm{~V}$	C $\mathrm{V} 2(\mathrm{AC})=1.00 \mathrm{~V}$ pp	R $1000+100^{\text {Mo }+ \text { Day }}$
$\mathbf{4 4 . 4 0 \%}$	509 nF	1514

DC

$$
\begin{aligned}
& V_{1}=\left(\frac{1514+200}{1514}\right) 7.5 \mathrm{~V}=8.49 \mathrm{~V} \\
& 8.49 \mathrm{~V}=X \cdot 20 \mathrm{~V}+(1-X)(-0.7 \mathrm{~V}) \\
& X=\left(\frac{8.49+0.7}{20+0.7}\right)=44.40 \%
\end{aligned}
$$

C: (method \#1) Assume $\mathrm{C}=0$. The AC voltage at V 2 will be

$$
V_{2}=\left(\frac{1514}{1514+(200+j 6280)}\right) 20.7 V_{p p}=4.814 V_{p p}
$$

For 1Vpp at V2

$$
\begin{aligned}
& Z_{c}=\left|\frac{1}{j \omega C}\right|=\left(\frac{1 V_{p p}}{4.814 V_{p p}}\right) 1514 \Omega=314.5 \Omega \\
& C=509 n F
\end{aligned}
$$

C: Method \#2

$$
\left(\frac{(R \| C)}{(R \| C)+(200+j 6280)}\right) 20.7 V_{p p}=1 V_{p p}
$$

solving using numerical methods (trial and error)

$$
C=539.12 n F
$$

