ECE 320-Quiz \#6 - Name

H Bridges, DC to DC Converters

H-Bridge Analysis:

1) Determine the voltages and currents for the following H-bridge. Assume ideal transistors:

- $\quad \mid \mathrm{Vbel}=0.7 \mathrm{~V}$
- \quad Vcel $=0.2 \mathrm{~V}$
- Current Gain $=\beta=40$

Let $\mathrm{R}=1000+100^{*}$ (Birth Month) + Birth Day. May 14 th would give $\mathrm{R}=1514$ Ohms.
Determine the voltages and currents

R	I1	I2	I3	V 4	V5

H-Bridge Analysis:

2) Determine the voltages and currents for the following H-bridge. Assume ideal transistors:

- $\quad \mid \mathrm{Vbel}=0.7 \mathrm{~V}$
- \quad Vcel $=0.2 \mathrm{~V}$
- Current Gain $=\beta=40$

Let $\mathrm{R}=1000+100^{*}$ (Birth Month) + Birth Day. May 14 th would give $\mathrm{R}=1514$ Ohms .
Determine the voltages and currents

R	I1	I2	I3	V4	V5

DC to DC Converter: (7805)

3) Determine the voltages and currents for the following DC to DC converter with a 6.5 V zener diode. Assume

- \quad Vbel $=0.7 \mathrm{~V}$
- \mid Vce(sat) $\mid=0.2 \mathrm{~V}$
- \quad Current Gain $=\beta=40$
- $R=1000+100 *$ (Birth Month $)+$ Birth Day. May 14th would give $\mathrm{R}=1514$ Ohms.

R	V1	V2	I3	I4	I5

DC to DC Converter (take 2):

4) The following circuit implements the switch used on a Buck converter. Determine the voltages and currents. Assume

- \quad Vbel $=0.7 \mathrm{~V}$
- \mid Vce(sat) $\mid=0.2 \mathrm{~V}$
- Current Gain $=\beta=40$
- $\mathrm{R}=1000+100^{*}($ Birth Month $)+$ Birth Day. May 14th would give $\mathrm{R}=1514$ Ohms.

R	V 1	V 2	I 3	I 4	I 5

DC to DC Converter (take 3)

5) Determine the voltages at V1 and V2 (both DC and AC). Assume

- $\mathrm{R}=1000+100^{*}($ Birth Month $)+$ Birth Day. May 14th would give $\mathrm{R}=1514$ Ohms.

R	V1		V2	
	V1(DC)	V1(AC)	V2(DC)	V2(AC)

DC to DC Converter: Design

6) Determine the duty cycle and C so that

- $\mathrm{V} 2(\mathrm{DC})$ is 7.50 V
- $\mathrm{V} 2(\mathrm{AC})=1.00 \mathrm{~V} p \mathrm{p}$
- $R=1000+100^{*}$ (Birth Month $)+$ Birth Day. May 14th would give $R=1514$ Ohms.
$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { X\% (duty cycle) } \\ \mathrm{V} 2(\mathrm{DC})=7.50 \mathrm{~V}\end{array} & \mathrm{C} & \mathrm{R} \\ & \mathrm{V} 2(\mathrm{AC})=1.00 \mathrm{~V} \mathrm{pp}\end{array}\right)$

Fourier Transform

5) (Matlab recommended) Determine the DC term and the first two harmonics for the following waveform

$$
\begin{aligned}
& x(t)=\max (0,2 \sin (t)+\cos (t)-1.5) \\
& x(t) \approx a_{0}+a_{1} \cos (t)+b_{1} \sin (t)+a_{2} \cos (2 t)+b_{2} \sin (2 t)
\end{aligned}
$$

Fourier Transform

6) Determine $y(t)$ given that

$$
x(t)=10+9 \cos (300 t)+8 \sin (600 t)
$$

