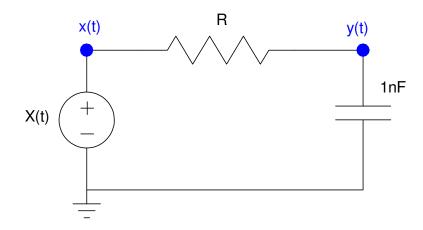
Fourier Transforms, DC to AC, SCR


## **Fourier Transforms**

1) Assume the Fourier transform for X(t) is

$$x(t) = 10 + 11\sin(t) + 12\cos(2t)$$

Find y(t). Let R be 1000 + 100\* (your birth month) + (your birth day). March 14th would give R = 1514 Ohms.

| 1000 + 100*Month + Day |  |
|------------------------|--|
|                        |  |



### **Fourier Transforms**

2) Assume a 1 rad/sec parabolic sine wave (of Ninja Turtles fame).

$$x(t) = t(\pi - t) \qquad 0 < t < \pi$$
  
$$t(\pi + t) \qquad -\pi < t < 0$$
  
$$x(t + \pi) = x(t)$$

Determine the magnitude of the 3rd harmonic of the Fourier Transform for x(t):

$$a_3 = \frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \cdot \cos(3t) \cdot dt = 0$$
 it's an odd function  
$$b_3 = \frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \cdot \sin(3t) \cdot dt$$
 solve for b3

note:

• Hand calculations, Matlab, calculators, etc. are allowed...

| b3 | Method / Resource used to solve for b3 |  |  |
|----|----------------------------------------|--|--|
|    |                                        |  |  |
|    |                                        |  |  |

## **DC to AC Converter**

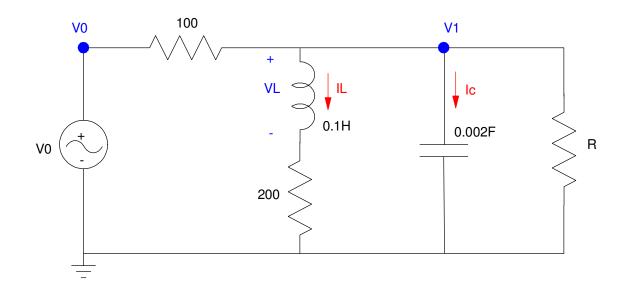
- 3) Assume the Fourier transform for the output of a DC to AC converter driving a 1 Ohms reisistor is as follows:
  - note: units are Vp (peak voltage)

| Harmonic    | 0 (DC) | 1    | 2 | 3   | 4   | 5   |
|-------------|--------|------|---|-----|-----|-----|
| an (cosine) | 0      | 18.3 | 0 | 2.6 | 0   | 0.7 |
| bn (sine)   | 0      | 2.7  | 0 | 0   | 1.4 | 0   |

## Determine the following:

| Total Energy in the signal | Energy in the 1st harmonic | Efficiency % of energy in the 1st harmonic |
|----------------------------|----------------------------|--------------------------------------------|
|                            |                            |                                            |
|                            |                            |                                            |

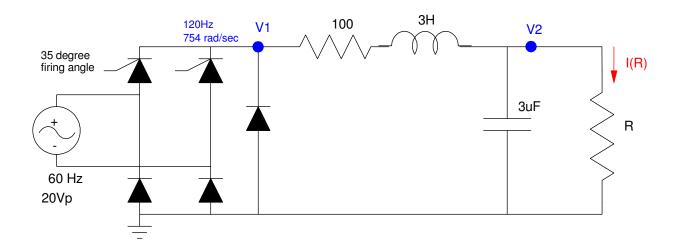
## DC to AC Converter: Differential equations for a Circuit


- 4) Determine the differential equations which describe the following circuit. Note

  - $V_L = L \frac{dI_L}{di}$   $I_c = C \frac{dV_1}{dt}$

Assume R = 1000 + 100\*(Birth Month) + (Birth day). For May 15th, for example, R = 1514 Ohms.

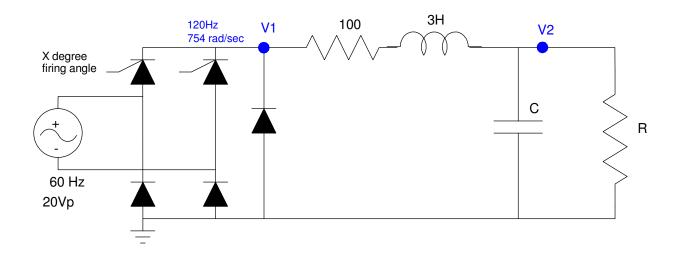
$$\frac{sI_L}{dt} = f(V_0, I_L, V_1) = ?$$


$$\frac{sV_1}{dt} = g(V_0, I_L, V_1) = ?$$



# SCR (5 diode version)

5) SCR: Analysis. Determine the votlages at V1 and V2 (both DC). Assume a firing angle of 120 degrees.


| R                   | V1 |           | V2 |           |  |
|---------------------|----|-----------|----|-----------|--|
| 1000 + 100*Mo + Day | DC | AC (V1pp) | DC | AC (V2pp) |  |
|                     |    |           |    |           |  |
|                     |    |           |    |           |  |
|                     |    |           |    |           |  |



## 6) SCR Design. Determine the firing angle and C so that

- V2(DC) = 4.5V
- V2(AC) = 500 mVpp
- R = 1000 + 100\*(Birth Month) + (Birth Day). May 14th would give R = 1514 Ohms.

| V1(DC) | Firing Angle | С | R<br>1000 + 100*Mo + Day |
|--------|--------------|---|--------------------------|
|        |              |   |                          |

