ECE 320-Quiz \#7 - Name

Fourier Transforms, DC to AC, SCR

Fourier Transforms

1) Assume the Fourier transform for $X(t)$ is

$$
x(t)=10+11 \sin (t)+12 \cos (2 t)
$$

Find $\mathrm{y}(\mathrm{t})$. Let R be $1000+100^{*}$ (your birth month) + (your birth day). March 14 th would give $\mathrm{R}=1514 \mathrm{Ohms}$.

R	$\mathrm{y}(\mathrm{t})$
$1000+100^{*}$ Month + Day	

Fourier Transforms

2) Assume a $1 \mathrm{rad} / \mathrm{sec}$ parabolic sine wave (of Ninja Turtles fame).

$$
\begin{array}{rc}
x(t)=t(\pi-t) & 0<t<\pi \\
t(\pi+t) & -\pi<t<0
\end{array} \quad x(t+\pi)=x(t)
$$

Determine the magnitude of the 3rd harmonic of the Fourier Transform for $\mathrm{x}(\mathrm{t})$:

$$
\begin{array}{ll}
a_{3}=\frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \cdot \cos (3 t) \cdot d t=0 & \text { it's an odd funciton } \\
b_{3}=\frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \cdot \sin (3 t) \cdot d t & \text { solve for b3 }
\end{array}
$$

note:

- Hand calculations, Matlab, calculators, etc. are allowed...

b3	Method / Resource used to solve for b3

DC to AC Converter

3) Assume the Fourier transform for the output of a DC to AC converter driving a 1 Ohms reisistor is as follows:

- note: units are Vp (peak voltage)

Harmonic	$0(\mathrm{DC})$	1	2	3	4	5
an (cosine)	0	18.3	0	2.6	0	0.7
bn (sine)	0	2.7	0	0	1.4	0

Determine the following:

Total Energy in the signal	Energy in the 1st harmonic	Efficiency \% of energy in the 1st harmonic

DC to AC Converter: Differential equations for a Circuit

4) Determine the differential equations which describe the following circuit. Note

- $V_{L}=L \frac{d I_{L}}{d i}$
- $I_{c}=C \frac{d V_{1}}{d t}$

Assume $\mathrm{R}=1000+100 *$ (Birth Month) + (Birth day). For May 15th, for example, $\mathrm{R}=1514$ Ohms.

$$
\begin{aligned}
& \frac{s I_{L}}{d t}=f\left(V_{0}, I_{L}, V_{1}\right)=? \\
& \frac{s V_{1}}{d t}=g\left(V_{0}, I_{L}, V_{1}\right)=?
\end{aligned}
$$

SCR (5 diode version)
5) SCR: Analysis. Determine the votlages at V1 and V2 (both DC). Assume a firing angle of 120 degrees.

$1000+100^{*}$ Mo + Day	V1		V2	
	DC	AC (V1pp)	DC	AC (V2pp)

6) SCR Design. Determine the firing angle and C so that

- $\mathrm{V} 2(\mathrm{DC})=4.5 \mathrm{~V}$
- $\mathrm{V} 2(\mathrm{AC})=500 \mathrm{mV} \mathrm{pp}$
- $\mathrm{R}=1000+100^{*}$ (Birth Month $)+$ (Birth Day). May 14th would give $\mathrm{R}=1514$ Ohms.

V1(DC)	Firing Angle	C	R
			$1000+100^{*} \mathrm{Mo}+$ Day

