ECE 320 - Homework \#3

Ideal Diodes, LEDs, AC to DC Converters. Due February 1st
Please make the subject "ECE 320 HW\#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Ideal Diodes

1) Assume ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$. Determine the voltage and the current

Assume the diode is on

$$
\begin{aligned}
& V_{d}=0.7 \mathrm{~V} \\
& I_{d}=\left(\frac{5 \mathrm{~V}-0.7 \mathrm{~V}}{100}\right)=43.0 \mathrm{~mA}
\end{aligned}
$$

note: This was way easier than solving nonlinear equaitons.
2) Assume ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$. Determine the voltages and currents

Assume (this is a guess)

- Diode 1 is on
- Diode 2 is off
- Diode 3 is on

Then

$$
\begin{aligned}
& V_{3}=0.7 V \\
& V_{2}=V_{1}-0.7 V
\end{aligned}
$$

The third equation is a supernode

$$
\left(\frac{V_{1}-5}{100}\right)+\left(\frac{V_{2}}{100}\right)+\left(\frac{V_{2}-V_{3}}{100}\right)-I_{d 2}+\left(\frac{V_{1}}{100}\right)=0
$$

Substituting for V2 and V3 and multiplying by 100 to clear the denominator

$$
\left(V_{1}-5\right)+\left(V_{1}-0.7\right)+\left(V_{1}-1.4\right)+\left(V_{1}\right)=0
$$

Solving

$$
\begin{array}{ll}
V_{1}=1.775 \mathrm{~V} & (1.7255 \mathrm{~V} \text { solving the nonlinear equations }) \\
V_{2}=1.075 \mathrm{~V} & (1.0801 \mathrm{~V} \text { solving the nonlinear equations }) \\
V_{3}=0.700 \mathrm{~V} & (0.6113 \mathrm{~V} \text { solving the nonlinear equations })
\end{array}
$$

Also note that the resistor values don't matter: as long as they are all the same, the voltages remain unchanged for ideal diodes.

LEDs

The specifications for a Piranah RGB LED are

Color	Vf @ 20mA	mcd @ 20mA
red	2.0 V	10,000
green	3.2 V	10,000
blue	3.2 V	10,000

3) Design a circuit to drive these LEDs with a 5 V source to produce baby blue:

- Red $=8470 \mathrm{mcd} \quad(216 / 255)$
- Green $=9647 \mathrm{mcd} \quad(246 / 255)$
- Blue $=9921 \mathrm{mcd}(253 / 255)$

$$
\begin{aligned}
& I_{r}=\left(\frac{8470 \mathrm{mcd}}{10000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=16.94 \mathrm{~mA} \\
& R_{r}=\left(\frac{5 \mathrm{~V}-2.0 \mathrm{~V}}{16.94 \mathrm{~mA}}\right)=177 \Omega \\
& I_{g}=\left(\frac{9647 \mathrm{mcd}}{10000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=19.29 \mathrm{~mA} \\
& R_{g}=\left(\frac{5 \mathrm{~V}-3.2 \mathrm{~V}}{19.29 \mathrm{~mA}}\right)=93.3 \Omega \\
& I_{b}=\left(\frac{9921 \mathrm{mcd}}{10000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=19.84 \mathrm{~mA} \\
& R_{b}=\left(\frac{5 \mathrm{~V}-3.2 \mathrm{~V}}{19.84 \mathrm{~mA}}\right)=90.7 \Omega
\end{aligned}
$$

4) Design a circuit to drive these LEDs with a 5 V source producing burgundy red:

- $\operatorname{Red}=6274 \operatorname{mcd}(160 / 255)$
- Green $=313 \mathrm{mcd}(8 / 255)$
- \quad Blue $=745 \operatorname{mcd}(19 / 255)$

$$
\begin{aligned}
& I_{r}=\left(\frac{6274 m c d}{10000 m c d}\right) 20 m A=12.55 m A \\
& R_{r}=\left(\frac{5 V-2.0 V}{12.55 m A}\right)=239 \Omega \\
& I_{g}=\left(\frac{313 m c d}{10000 m c d}\right) 20 m A=0.6269 m A \\
& R_{g}=\left(\frac{5 V-3.2 V}{0.626 m A}\right)=2875 \Omega \\
& I_{b}=\left(\frac{745 m c d}{10000 m c d}\right) 20 m A=1.490 m A \\
& R_{b}=\left(\frac{5 V-3.2 V}{1.490 m A}\right)=1208 \Omega
\end{aligned}
$$

AC to DC Converters

5) Determine the votlages at V1 and V2 (DC and AC)

$$
\max \left(V_{1}\right)=19.3 V
$$

$$
I \approx\left(\frac{19.3 V}{230 \Omega}\right)=83.91 m A \quad \text { worst case }
$$

$$
I=C \frac{d V}{d t}
$$

$$
83.91 \mathrm{~mA}=250 \mu F \frac{d V}{1 / 60 \mathrm{~s}}
$$

V1 Analysis
$V_{1}(A C)=d V=5.594 V_{p p}$
$V_{1}(D C)=19.3 V-\frac{1}{2} V_{1}(A C)$
$V_{1}(D C)=16.50 \mathrm{~V}$
V2 Analysis
$V_{2}(D C)=\left(\frac{200}{200+30}\right) V_{1}(D C)=14.35 \mathrm{~V}$
200 Ohms || $50 \mathrm{uF}=200$ II - j53.05 $=13.147-\mathrm{j} 49.563$
2H >> j754 Ohms
$V_{2}(A C)=\left(\frac{(13.147-j 49.563)}{(13.147-j 49.563)+(30+j 754)}\right) 5.594 V_{p p}$
$V_{2}(A C)=406 m V_{p p}$
6) Build the circuit in CircuitLab (or similar program) and verify your calculations for problem \#5

V1 (Blue)

- $\quad \mathrm{Max}=19.09 \mathrm{~V}$
- $\quad \mathrm{Min}=14.78 \mathrm{~V}$
- $\mathrm{DC}=(\mathrm{Max}+\mathrm{Min}) / 2=16.93 \mathrm{~V} \quad(16.50 \mathrm{~V}$ computed $)$
- $\mathrm{AC}=(\mathrm{Max}-\mathrm{Min})=4.310 \mathrm{Vpp} \quad(5.594 \mathrm{~V}$ computed $)$

V2 (orange)

- $\mathrm{Max}=14.89 \mathrm{~V}$
- \quad Min $=14.66 \mathrm{~V}$
- $\mathrm{DC}=14.77 \mathrm{~V} \quad(14.35 \mathrm{~V}$ computed $)$
- $\mathrm{AC}=230 \mathrm{mV} p \mathrm{p}$ (406 mVpp computed $)$

7) Determine C 1 and C 2 so that AC voltages are: $\mathrm{V} 1=2 \mathrm{Vpp}$ and $\mathrm{V} 2=250 \mathrm{mVpp}$.

$$
\begin{aligned}
& V_{1}(A C)=2 V_{p p} \quad \text { given } \\
& V_{1}(D C)=19.3 V-\frac{1}{2} 2 V_{p p}=18.3 V \\
& V_{2}(D C)=\left(\frac{200}{200+30}\right) V_{1}(D C)=15.913 V
\end{aligned}
$$

Finding C1:

$$
\begin{aligned}
& I=\left(\frac{18.3 V}{230 \Omega}\right)=79.57 m A \\
& I=C_{1} \frac{d V}{d t}
\end{aligned}
$$

$79.57 m A=C_{1} \frac{2 V_{p p}}{1 / 60 s}$
$C_{1}=663 \mu F$
Finding C2: Assume C2 $=0$.

$$
V_{2}(A C)=\left(\frac{200}{(200)+(5+j 754)}\right) 2 V_{p p}=512 m V_{p p}
$$

For V2(AC) to be 250 mVpp

$$
\begin{aligned}
& \left|\frac{1}{j \omega C}\right|=\left(\frac{250 m V}{512 m V}\right) 200 \Omega=97.65 \Omega \\
& C_{2}=27.16 \mu F
\end{aligned}
$$

8) Build this circuit in CircuitLab (or similar program) and verify your calculations for problem \#7

V1: (blue)

- $\max (\mathrm{V} 1)=18.89 \mathrm{~V}$
- $\min (\mathrm{V} 1)=17.13 \mathrm{~V}$
- $\mathrm{V} 1(\mathrm{DC})=18.01 \mathrm{~V}$
(vs. 18.30 V computed)
- $\mathrm{V} 1(\mathrm{AC})=1.76 \mathrm{Vpp}$
(vs. 2.00 Vpp computed)

V2 (orange)

- $\max (\mathrm{V} 2)=15.74 \mathrm{~V}$
- $\min (\mathrm{V} 2)=15.58 \mathrm{~V}$
- $\mathrm{V} 2(\mathrm{DC})=15.66 \mathrm{~V}$
(vs. 15.913 V comptued)
- $\mathrm{V} 2(\mathrm{AC})=160 \mathrm{mVpp}$
(vs. 250 mVpp computed)

