ECE 320 - Homework \#4

Max/Min Circuits, Clipper Circuits, Transistor Theory. Due Monday, February 8th

Max/Min:

1) Determine the voltages and currents for the following max/min circuit. What function does this circuit implement? $Y=f(A, B, C, D)$

2) Check your results in CircuitLab (or similar program)

	I	I 2	I 3	I	I	I 5
Calculated (ideal diode)	9.30 mA	0	0	0.3 mA	0	8.0 mA
Simulated (nonlinear model)	9.314 mA	-0.00000025 mA	-0.00000025 mA	0.315 mA	-0.0000025 mA	8.007 mA

The ideal diode model is fairly accurate

Clipper Circuits:

3) Design a circuit to approximate the following function subject to the following requirements:

- Input: $0 . .10 \mathrm{~V}$, capable of 100 mA
- Output: 100k resistor
- Relationship: Graph below, +/-200mV

The zener voltages are the voltage (y -axis) where the slope changes
R0:

$$
\text { Slope }=2.38=1+\frac{R_{0}}{1 k}
$$

$$
R_{0}=1.38 k
$$

R1:

$$
\begin{aligned}
& \text { Slope }=1.23=\left(\frac{R_{1}}{R_{1}+1000}\right) 2.38 \\
& R_{1}=\left(\frac{1.23}{2.38-1.23}\right) 1000=1069 \Omega
\end{aligned}
$$

R2:
Slope $=0.53=\left(\frac{R_{12}}{R_{12}+1000}\right) 2.38$
$R_{12}=R_{1} \| R_{2}=\left(\frac{0.53}{2.38-0.53}\right) 1000=286.5 \Omega$
$R_{2}=391.4 \Omega$

4) Check your design in CircuitLab

5) Design a circuit which meets the following requirements:

- Input: -10 .. +10 V , capable of 100 mA
- Output: 1 k resistor
- Relationship:

$$
V_{\text {out }}=\left\{\begin{array}{cc}
+7 \mathrm{~V} & V_{\text {in }}>+7 \mathrm{~V} \\
V_{\text {in }} & -7 V<V_{\text {in }}<+7 \mathrm{~V} \\
-7 \mathrm{~V} & V_{\text {in }}<-7 \mathrm{~V}
\end{array}\right.
$$

Use a pair of zener diodes with $\mathrm{Vz}=6.3 \mathrm{~V}$

Transistors

6) Determine the current gain, β, for the transistor show below. Also label the off, active, and saturated regions.

Pick a point in the active region:
When $\mathrm{Ib}=5 \mathrm{~mA}$, $\mathrm{Ic}=250 \mathrm{~mA}$

$$
\begin{aligned}
& \beta I_{b}=I_{c} \\
& \beta=\frac{250 \mathrm{~mA}}{5 \mathrm{~mA}}=50
\end{aligned}
$$

7) Draw the load-line and determine the Q-point for

- \quad Vin $=0 \mathrm{~V}$
- $\mathrm{Vin}=3 \mathrm{~V}$
- $\mathrm{Vin}=6 \mathrm{~V}$

Lab (over)

Lab: Please include a photo of your circuit to receive credit for problems 8-10

8-10) Build the following circuit with your electronics kit.

- Measure Vce and Ic for $1 \mathrm{k}<\mathrm{Rb}<$ infinity.
- Determine the operating point for each conidition and the current gain for your 3904 transistor
- Draw the load line on the graph below and mark each point you measured

Rb	lb	Vce	Ic	Current Gain (Ic/lb)	Operating Region (off / active / saturated)
1 k $\mathrm{br}-\mathrm{bl}-\mathrm{re}$	4.25 mA	0.01 V	4.99 mA	1.174	saturated
10 k $\mathrm{br}-\mathrm{bl}-\mathrm{or}$	428 uA	0.06 V	4.94 mA	11.54	saturated
100 k $\mathrm{br}-\mathrm{bl}-\mathrm{ye}$	43.30 uA	3.11 V	1.89 mA	43.65	active
1 M $\mathrm{br}-\mathrm{bl}-\mathrm{gr}$	4.410 uA	4.79 V	0.21 mA	47.62	active
infinity	0 uA	4.98 V	0 mA	n / a	off

