ECE 320 - Homework \#7

Fourier Transform, DC to AC, SCR. Due March 1st, 2021

Fourier Transform

The voltage V 1 is a 60% duty cycle square wave

$$
\begin{aligned}
& V_{1}(t)=V_{1}(t+1 \mathrm{~ms}) \\
& V_{1}(t)=\left\{\begin{array}{lc}
+20 \mathrm{~V} & \text { Vl is periodic in lms - i.e. it's a } 1 \mathrm{kHz} \text { square wave } \\
-0.7 \mathrm{~V} & 000 \mu \mathrm{~L}<600 \mu \mathrm{~s}
\end{array}\right. \\
& \hline
\end{aligned}
$$

1) Determine the first five terms for the Fourier transform for $\mathrm{V} 1(\mathrm{t})$

- DC
- 1 kHz , sine and cosine
- 2 kHz , sine and cosine

$$
V_{1}(t)=a_{0}+a_{1} \cos \left(\omega_{0} t\right)+b_{1} \sin \left(\omega_{0} t\right)+a_{2} \cos \left(2 \omega_{0} t\right)+b_{2} \sin \left(2 \omega_{0} t\right)
$$

Option 1: Slow Fourier Transform (my prefrence)

```
>> a0 = mean(V1)
a0=11.7188
>> al = 2*mean(V1 .* cos(2*pi*t))
a1= -3.8689
>> b1 = 2*mean(V1 .* sin(2*pi*t))
b1 = 11.9197
>> a2 = 2*mean(V1 .* cos(2*pi*2*t))
a2=3.1342
>> b2 = 2*mean(V1 .* sin(2*pi*2*t))
b2 = 2.2743
```

Option \#2: Complex Fourier Transform (same result)

```
>> c0 = mean(V1)
c0 = 11.7188
>> c1 = 2*mean(V1 .* exp(-j*2*pi*t))
c1 = -3.8689 -11.9197i
>> c2 = 2*mean(V1 .* exp(-j*2*pi*2*t))
c2 = 3.1342 - 2.2743i
```

meaning

$$
\begin{aligned}
v_{1}(t)= & & & \text { DC term } \\
& -3.8689 \cos \left(\omega_{0} t\right)+11.9197 \sin \left(\omega_{0} t\right) & & 1 \mathrm{kHz} \text { term } \\
& +3.1342 \cos \left(2 \omega_{0} t\right)+2.2743 \sin \left(2 \omega_{0} t\right) & & 2 \mathrm{kHz} \text { term } \\
& \vdots & &
\end{aligned}
$$

Checking in Matlab

```
t = t * 2*pi;
V1f = a0 + a1*cos(t) + b1*sin(t) + a2*cos(2*t) + b2*sin(2*t);
plot(t,V1,'b',t,V1f, 'r');
```


2) Determine $V 2(t)$ at each frequency

- DC
- 1 kHz
- 2 kHz

Treat this as three separate problems...
DC:

$$
\begin{aligned}
& \omega=0 \\
& V_{1}=11.7188 \\
& L \rightarrow j \omega L=0 \\
& C \rightarrow \frac{1}{j \omega C}=\infty \\
& V_{2}=\left(\frac{100}{100+5}\right)(11.7188)=11.161
\end{aligned}
$$

1 kHz :

$$
\begin{aligned}
& v_{1}(t)=-3.8689 \cos \left(\omega_{0} t\right)+11.9197 \sin \left(\omega_{0} t\right) \\
& \omega_{0}=2 \pi f=6280 \\
& V_{1}=-3.8689-j 11.9197 \\
& L \rightarrow j \omega L=j 314 \Omega \\
& C \rightarrow \frac{1}{j \omega C}=-j 31.847 \Omega \\
& 100 \Omega \|-j 31.847 \Omega=9.209-j 28.915 \\
& V_{2}=\left(\frac{(9.209-j 28.915)}{(9.209-j 28.915)+(5+j 14)}\right)(-3.8689-j 11.9197) \\
& V_{2}=-0.013+j 1.211 \\
& v_{2}(t)=-0.013 \cos \left(\omega_{0} t\right)-1.211 \sin \left(\omega_{0} t\right)
\end{aligned}
$$

2 kHz :

$$
\begin{aligned}
& 2 \omega_{0}=2 \cdot 6280=12,560 \\
& v_{1}(t)=+3.1342 \cos \left(2 \omega_{0} t\right)+2.2743 \sin \left(2 \omega_{0} t\right) \\
& V_{1}=3.1342-j 2.2743 \\
& L \rightarrow j \omega L=j 628 \Omega \\
& C \rightarrow \frac{1}{j \omega C}=-j 15.924 \Omega \\
& 100 \Omega \text { II }-j 15.924 \Omega=2.473-j 15.530 \Omega \\
& V_{2}=\left(\frac{(2.473-j 15.530)}{(2.473-j 15.530)+(5+j 628)}\right)(3.1342-j 2.2743) \\
& V_{2}=-0.089+j 0.044 \\
& v_{2}(t)=-0.089 \cos \left(2 \omega_{0} t\right)-0.044 \sin \left(2 \omega_{0} t\right)
\end{aligned}
$$

So, the total answer is $\mathrm{DC}+1 \mathrm{kHz}+2 \mathrm{kHz}$:

$$
\begin{aligned}
v_{2}(t)= & 11.161 \\
& -0.013 \cos \left(\omega_{0} t\right)-1.211 \sin \left(\omega_{0} t\right) \\
& -0.089 \cos \left(2 \omega_{0} t\right)-0.044 \sin \left(2 \omega_{0} t\right)
\end{aligned}
$$

3) Compare the results from this homework set vs. homework set \#6, problem \#4 and \#5.

- Does using the Fourier transform for $\mathrm{V} 1(\mathrm{t})$ give more accurate results in predicting $\mathrm{V} 2(\mathrm{t})$?

Yes, using the Fourier Transforms predicts the AC voltage at V2 more accurately. For a lot more work.

	V2		
	DC	AC: 1 kHz	AC (2KHz)
Calculated HW \#6	11.16 V	2.200 Vpp	0 Vpp
Simulated HW \#6	11.026 V	2.588 Vpp	?
Calculated Using Fourier Transforms HW \#7	11.161 V	2.422 Vpp	0.199 Vpp

DC to AC

4) Let

- $A=0 \mathrm{~V} / 5 \mathrm{~V}$ square wave, $60 \mathrm{~Hz}, 0$ degree time delay
- $\mathrm{B}=0 \mathrm{~V} / 5 \mathrm{~V}$ square wave, $60 \mathrm{~Hz}, 180$ degree time delay
- $\mathrm{C} 1=10 \mathrm{uF}$

Determine using CircuitLab the voltage V2 (i.e. the votlage across a DC motor, modeled as a $10 \mathrm{Ohm} \& 200 \mathrm{mH}$ load)

5) Adjust C so that the voltage across the motor is as close to a sine wave as possible (trial and error)

Part of the problem is the LC isn't resonant at 60 Hz . To do this, let the LC tank resonate at $60 \mathrm{~Hz}(377 \mathrm{rad} / \mathrm{sec})$
$L s+\frac{1}{C s}=\left(s^{2}+\frac{1}{L C}\right) L^{2}$

$$
\frac{1}{L C}=377^{2}
$$

$\mathrm{L}=100 \mathrm{mH}, \mathrm{C}=70.36 \mathrm{uF}$

Increasing C to 110 uF works slightly better (closer to a 60 Hz sine wave at V2)

SCR

6) Assume a firing angle of 25 degrees. Determine the voltage at V1 and V2 (both DC and AC).

7) Change this circuit so that

- The voltge at V 2 is 8.00 V (DC)
- With a ripple of 500 mV pp

DC Analysis

$$
\begin{aligned}
& V_{1}(D C)=\left(\frac{50+5}{50}\right) 8.00 \mathrm{~V}=8.80 \mathrm{~V} \\
& V_{1}(D C)=\left(\frac{V_{p}+0.7}{\pi}\right)(1+\cos \theta)-0.7 \\
& 8.80 \mathrm{~V}=\left(\frac{18.6+0.7}{\pi}\right)(1+\cos \theta)-0.7 \\
& \theta=56.88^{0}
\end{aligned}
$$

AC Analysis

$$
V_{1}(A C) \approx 19.3 V_{p p}
$$

When $\mathrm{C}=50 \mathrm{uF}, \mathrm{V} 2(\mathrm{AC})=2.194 \mathrm{Vpp}$
If C is 2 x larger, the ripple is 2 x smaller

$$
C \rightarrow\left(\frac{2.194 V_{p p}}{0.5 V_{p p}}\right) 50 \mu F=219.4 \mu F
$$

8) Simulate this circuit in Matlab by

- Writing the differential eqautions which describe this circuit (state variables: IL and Vc)
- Specify V1(t) as a full-wave rectified sine wave, clipped at X degrees (from problem \#4)
- Use numerical integration to find V2(t)

The coupled differential equations that descibe this circuit is thus

$$
\begin{aligned}
& \frac{d V_{2}}{d t}=4557.9 I_{3}-91.158 V_{2} \\
& \frac{d I_{3}}{d t}=3.333 V_{1}-16.667 I_{3}-3.3333 V_{2}
\end{aligned}
$$

Solving in Matlab using numerical integration

Matlab Script:

```
t = 0;
dt = 1e-6;
I3 = 0;
V2 = 0;
V = [];
while(t < 10/120)
    phase = mod(377*t,pi);
    if(phase < 56.88*pi/180)
        V1 = -0.7;
    else
        V1 = 20*sin(phase) - 1.4;
    end
    V1 = max(V1, -0.7);
    dV2 = 4557.9*I3 - 91.158*V2;
    dI3 = 3.333*V1 - 16.667*I3 - 3.3333*V2;
    V2 = v2 + dV2*dt;
    I3 = I3 + dI3*dt;
    t = t + dt;
    if(t > 8/120)
        V = [V ; V1, V2];
    end
end
t = [1:length(V)]' * dt;
plot(t,V(:,1),'b',t,V(:,2), 'r');
```

Result:

```
ans =
    V1(DC) V2(DC)
    8.6687 7.9246
>> max(V) - min(V)
ans =
    V1pp v2pp
    19.3000 0.6623
```

The AC term is slightly off due to approximating the 1 st harmonic as max-min rather than the 1 st term in the Fourier series expansion.

Resulting Signals at V1 (blue) and V2 (red)

