## ECE 320 - Homework \#9

MOSFETs, MOSFET switch, CMOS logic. Due Monday, March 22nd

## MOSFETs

1) The VI characteristics for an n-channel MOSFET is shown on the following page. Assume Vth $=1.0 \mathrm{~V}$

- Determine the transconductance gain, kn
- Label the off / saturated / ohmic regions in the curve below.

Pick a point in the ohmic region (A)

$$
\begin{aligned}
& I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& 7.6 m A=k_{n}\left(7 V-1 V-\frac{2.4 V}{2}\right) 2.4 V
\end{aligned}
$$

$$
k_{n}=660 \mu \frac{A}{V^{2}}
$$

Pick a point in the saturated region (B)

$$
\begin{aligned}
& I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2} \\
& 11.8 m A=\frac{k_{n}}{2}(7 V-1 V)^{2} \\
& k_{n}=656 \mu \frac{A}{V^{2}}
\end{aligned}
$$

2) Draw the load line and mark the operating points for $\mathrm{Vg}=\{0 \mathrm{~V}, 4 \mathrm{~V}, 7 \mathrm{~V}\}$


## MOSFET Switch

One of the MOSFET's that CircuitLab has is an IRF1047. It's specifications are

- $\max (\mathrm{Ic})=100 \mathrm{~A}$ continuous
- $\operatorname{Vgs}($ th $)=4 \mathrm{~V}(\max )$
- Rds = 7.8mOhm @ Ids =78A @ Vgs = 10V
- $\$ 0.53$ each

3) Determine the transconductance gain, kn, for this MOSFET. Assume Vtn $=4.00 \mathrm{~V}$ In the ohmic region

$$
\begin{aligned}
& I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}=0.0078 \Omega \cdot 78 A=0.6084 \mathrm{~V} \\
& 78 A=k_{n}\left(10 \mathrm{~V}-4 \mathrm{~V}-\frac{0.6084 \mathrm{~V}}{2}\right) 0.6084 \mathrm{~V} \\
& k_{n}=22.501 \frac{\mathrm{~A}}{V^{2}}
\end{aligned}
$$

4) Determine the votlages and currents for the following circuit when $\mathrm{Vg}=5 \mathrm{~V}$

- Check your result in CircuitLab

Assume saturated

$$
\begin{aligned}
& I_{d s}=\frac{22.501}{2}(5-4)^{2} \\
& I_{d s}=11.25 \mathrm{~A} \\
& V_{d s}=40-2 I_{d s}=17.499 \mathrm{~V}
\end{aligned}
$$


5) Determine the votlages and currents for the following circuit when $\mathrm{Vg}=10 \mathrm{~V}$

- Check your result in CircuitLab

Assume Ohmic

$$
\begin{aligned}
& I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& I_{d s}=22.501\left(10-4-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}+2 I_{d s}=40
\end{aligned}
$$

Solving

$$
\begin{aligned}
& I_{d s}=19.925 \mathrm{~A} \\
& V_{d s}=0.149 \mathrm{~V}
\end{aligned}
$$



## CMOS Logic

6) Design a CMOS gate to implement the function: $f(A, B, C, D)$

| $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ | CD |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 11 | 10 |  |
| AB | 00 | 1 | 0 | 0 | 0 |
|  | 01 | 1 | 1 | 0 | 1 |
|  | 11 | $x$ | $x$ | $x$ | $x$ |
|  | 10 | 1 | 1 | $x$ | $x$ |

Circling the 0 's is slightly easier than circling the 1's

$$
\mathrm{Y}^{\prime}=\mathrm{CD}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}
$$



