Semiconductors, pn Junction, ideal diodes - Spring 2022

1a) What are holes and electrons?
Electrons: negatively charged particles that form covalent bonds and move around to carry current.
Holes: A missing electron in a covalent bond. A missing negative charge behaves like a positive charge.

1b) The voltage drop across a silicon diode is about 0.7 V .

- Does this voltage go up or down as temperature goes up?
- Why does this happen?

Voltage goes down.

The voltage across a pn junciton is a funciton of the doping level / the intrinisic carrier concentration level

$$
V_{d}=V_{T} \cdot \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)
$$

As temperature goes up, the number of thermal holes and electronics (ni) goes up. This makes the doping level less significant, making the diode pn -junction less distinct, reducing the voltage.
2) An 0603 resistor has the following dimensions

- $\mathrm{L}=0.06 \mathrm{~cm}$
- $\mathrm{W}=0.03 \mathrm{~cm}$
- $\mathrm{H}=0.02 \mathrm{~cm}$

Determine the doping required to make a resistance of R ohms where

- $\mathrm{R}=1200+100^{*}$ (your birth month) + (your birth date).
- For example, May 14th would give $\mathrm{R}=1714$ Ohms

R	Required Doping of Boron
atoms $/ \mathrm{cc}$	

$$
R=\left(\frac{\rho L}{A}\right)
$$

$$
1714 \Omega=\left(\frac{\rho \cdot 0.06 \mathrm{~cm}}{(0.03 \mathrm{~cm})(0.02 \mathrm{~cm})}\right)
$$

$$
\rho=17.14 \Omega \cdot \mathrm{~cm}
$$

$$
\sigma=\frac{1}{\rho}=0.0583=n_{n} \cdot q \cdot \mu_{n}
$$

$$
0.0583=n_{n} \cdot\left(1.6 \cdot 10^{-19}\right) \cdot(500)
$$

$$
n_{n}=7.29 \cdot 10^{14} \frac{\text { atoms }}{c c}
$$

3) Thermistors: Assume the VI characteristics of a thermistor are

$$
R_{T}=2000 \exp \left(\frac{4350}{T+273}-\frac{4350}{298}\right) \Omega
$$

where T is the temperature in degrees C . Determine RT and the temperature if $\mathrm{V} 1=7.3 \mathrm{~V}$

- Let R be $1200+($ your birth month $) * 100+$ your birthday. (March 14th would give $\mathrm{R}=1714$ Ohms)

$$
\begin{aligned}
& V_{1}=7.3 V=\left(\frac{R_{T}}{R_{T}+1714}\right) 12 V \\
& R_{T}=\left(\frac{7.3 V}{12 V-7.3 V}\right) 1714 \Omega \\
& R_{T}=2662.17 \Omega \\
& T=19.27^{0} \mathrm{C}
\end{aligned}
$$

4) Load Lines: The VI characteristic for a diode is show on the graph below. Draw the load line for the following circuit and from the graph, determine Vd and Id

- Let R be $1200+100 *$ (Birth Month $)+$ (Birthday)

R $1200+100^{*}$ Month + Day	Load Line x-intercept	Load Lie y-intercept	Vd	Id
1714	10 V	5.83 mA	3.3 V	3.8 mA

5) Diodes (nonlinear equations): Assume

- The VI characteristics of a diode are

$$
I_{d}=10^{-11} \cdot\left(\exp \left(\frac{V_{d}}{0.038}\right)-1\right)
$$

- $\mathrm{R}=1200+100 *$ (your birth month) + (your birth date).

Write 7 equations so solve for 7 unknowns: V1, V2, V3, V4, Id1, Id2, Id3

- note: don't solve.

$$
\begin{aligned}
& I_{d 1}=10^{-11} \cdot\left(\exp \left(\frac{V_{1}-V_{0}}{0.038}\right)-1\right) \\
& I_{d 2}=10^{-11} \cdot\left(\exp \left(\frac{0-V_{3}}{0.038}\right)-1\right) \\
& I_{d 3}=10^{-11} \cdot\left(\exp \left(\frac{V_{1}-V_{2}}{0.038}\right)-1\right) \\
& \left(\frac{V_{1}-10}{100}\right)+I_{d 1}+\left(\frac{V_{1}-V_{3}}{R}\right)+I_{d 3}=0 \\
& -I_{d 3}+\left(\frac{V_{2}-V_{4}}{400}\right)=0 \\
& \left(\frac{V_{3}-V_{1}}{R}\right)-I_{d 2}+\left(\frac{V_{3}-V_{4}}{300}\right)=0 \\
& \left(\frac{V_{4}-V_{2}}{400}\right)+\left(\frac{V_{4}-V_{3}}{300}\right)+\left(\frac{V_{4}}{500}\right)=0
\end{aligned}
$$

6) Diodes (nonlinear equations): Assume

- The VI characteristics of a diode are

$$
I_{d}=10^{-11} \cdot\left(\exp \left(\frac{V_{d}}{0.038}\right)-1\right)
$$

- $\mathrm{R}=1200+100$ * (your birth month) + (your birth date).

Write 7 equations so solve for 7 unknowns: V1, V2, V3, Id1, Id2, Id3, Id4

- note: don't solve.

$$
\begin{aligned}
& I_{d 1}=10^{-11} \cdot\left(\exp \left(\frac{V_{1}-V_{2}}{0.038}\right)-1\right) \\
& I_{d 2}=\left(\exp \left(\frac{0-V_{2}}{0.038}\right)-1\right) \\
& I_{d 3}=10^{-11} \cdot\left(\exp \left(\frac{V_{1}-V_{3}}{0.038}\right)-1\right) \\
& I_{d 4}=10^{-11} \cdot\left(\exp \left(\frac{V_{3}-0}{0.038}\right)-1\right) \\
& \left(\frac{V_{1}-10}{100}\right)+I_{d 1}+\left(\frac{V_{1}}{R}\right)+I_{d 3}=0 \\
& I_{d 1}=-I_{d 2} \\
& I_{d 3}=I_{d 4}
\end{aligned}
$$

